Influence of pathogenicity islands and the minor leuX-encoded tRNA5Leu on the proteome pattern of the uropathogenic Escherichia coli strain 536. 2000

K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
Institut für Molekulare Infektionsbiologie, Würzburg, Germany.

The uropathogenic Escherichia coli strain 536 (O6:K15:H31) carries four distinct DNA regions in its chromosome, termed pathogenicity islands (PAIs I536 to IV536). Each of these PAIs encodes at least one virulence factor. All four PAIs are associated with tRNA genes. PAI I536 and PAI II536 can be spontaneously deleted from the chromosome by homologous recombination between flanking direct repeats. The deletion of PAI II536 results in the truncation of the associated gene leuX encoding the tRNALeu. This tRNA influences the expression of various virulence traits. In order to get a deeper insight into the role of PAI I536/II536 and of the tRNA5LeU for the protein expression, the protein expression patterns of Escherichia coli 536 and different derivatives were studied. Differences in the protein expression patterns of the wild-type strain Escherichia coli 536, its mutants 536-21 (PAI I536-, PAI II536-, leuX-), 536delta102 (PAI I536+, PAI II536+, leuX-) as well as of the strain 536R3 (PAI I536-, PAI II536-, leuX+) were analyzed by two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF mass spectrometry. We identified about 39 different intracellular proteins whose expression is markedly altered in the different strain backgrounds. These differences can be linked either to the presence or absence of the PAI I536 and PAI II536 or to that of the tRNA gene leuX. The identities of 34 proteins have been determined by MALDI-TOF-MS. The identification of five proteins was not possible. The results suggest that proteome analysis is an efficient approach to study differences in global gene expression. The comparison of protein expression patterns of the uropathogenic E. coli strain 536 and different derivatives revealed that in this strain the expression of various proteins including those encoded by many housekeeping genes is affected by the presence of PAI I536 and Pai II536 or by that of the tRNA5Leu.

UI MeSH Term Description Entries
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012356 RNA, Transfer, Leu A transfer RNA which is specific for carrying leucine to sites on the ribosomes in preparation for protein synthesis. Leucine-Specific tRNA,Transfer RNA, Leu,tRNALeu,tRNA(Leu),Leu Transfer RNA,Leucine Specific tRNA,RNA, Leu Transfer,tRNA, Leucine-Specific
D014552 Urinary Tract Infections Inflammatory responses of the epithelium of the URINARY TRACT to microbial invasions. They are often bacterial infections with associated BACTERIURIA and PYURIA. Infection, Urinary Tract,Infections, Urinary Tract,Tract Infection, Urinary,Tract Infections, Urinary,Urinary Tract Infection
D014774 Virulence The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. Pathogenicity
D015180 Electrophoresis, Gel, Two-Dimensional Electrophoresis in which a second perpendicular electrophoretic transport is performed on the separate components resulting from the first electrophoresis. This technique is usually performed on polyacrylamide gels. Gel Electrophoresis, Two-Dimensional,Polyacrylamide Gel Electrophoresis, Two-Dimensional,2-D Gel Electrophoresis,2-D Polyacrylamide Gel Electrophoresis,2D Gel Electrophoresis,2D PAGE,2D Polyacrylamide Gel Electrophoresis,Electrophoresis, Gel, 2-D,Electrophoresis, Gel, 2D,Electrophoresis, Gel, Two Dimensional,Polyacrylamide Gel Electrophoresis, 2-D,Polyacrylamide Gel Electrophoresis, 2D,Two Dimensional Gel Electrophoresis,2 D Gel Electrophoresis,2 D Polyacrylamide Gel Electrophoresis,Electrophoresis, 2-D Gel,Electrophoresis, 2D Gel,Electrophoresis, Two-Dimensional Gel,Gel Electrophoresis, 2-D,Gel Electrophoresis, 2D,Gel Electrophoresis, Two Dimensional,PAGE, 2D,Polyacrylamide Gel Electrophoresis, 2 D,Polyacrylamide Gel Electrophoresis, Two Dimensional,Two-Dimensional Gel Electrophoresis
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry

Related Publications

K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
May 2004, Journal of bacteriology,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
November 2002, Infection and immunity,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
March 2001, The Journal of infectious diseases,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
July 2001, Molecular genetics and genomics : MGG,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
May 2002, Molecular genetics and genomics : MGG,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
July 2001, Infection and immunity,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
August 2006, Molecular microbiology,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
January 2020, International journal of medical microbiology : IJMM,
K Piechaczek, and U Dobrindt, and A Schierhorn, and G S Fischer, and M Hecker, and J Hacker
November 2010, International journal of medical microbiology : IJMM,
Copied contents to your clipboard!