Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. 2000

E B Sheffield, and M W Quick, and R A Lester
Department of Neurobiology, CIRC room 560, 1719 Sixth Avenue South, University of Alabama at Birmingham, AL 35294-0021, USA.

Relationships between nicotinic acetylcholine receptor (nAChR) channel function and nAChR subunit mRNA expression were explored in acutely isolated rat medial habenula (MHb) neurons using a combination of whole-cell recording and single cell RT-PCR techniques. Following amplification using subunit-specific primers, subunits could be categorized in one of three ways: (i) present in 95-100% cells: alpha3, alpha4, alpha5, beta2 and beta4; (ii) never present: alpha2; and (iii) sometimes present ( approximately 40% cells): alpha6, alpha7 and beta3. These data imply that alpha2 subunits do not participate in nAChRs on MHb cells, that alpha6, alpha7 and beta3 subunits are not necessary for functional channels but may contribute in some cells, and that nAChRs may require combinations of all or subsets of alpha3, alpha4, alpha5, beta2 and beta4 subunits. Little difference in the patterns of subunit expression between nicotine-sensitive and insensitive cells were revealed based on this qualitative analysis, implying that gene transcription per se may be an insufficient determinant of nAChR channel function. Normalization of nAChR subunit levels to the amount of actin mRNA, however, revealed that cells with functional channels were associated with high levels (>0.78 relative to actin; 11/12 cells) of all of the category (i) subunits: alpha3, alpha4, alpha5, beta2 and beta4. Conversely, one or more of these subunits was always low (<0.40 relative to actin) in all cells with no detectable response to nicotine. Thus the formation of functional nAChR channels on MHb cells may require critical levels of several subunit mRNAs.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

E B Sheffield, and M W Quick, and R A Lester
June 1999, Neuropharmacology,
E B Sheffield, and M W Quick, and R A Lester
January 2013, Neuroscience,
E B Sheffield, and M W Quick, and R A Lester
July 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E B Sheffield, and M W Quick, and R A Lester
October 2008, The Journal of comparative neurology,
E B Sheffield, and M W Quick, and R A Lester
July 1995, Journal of neurophysiology,
E B Sheffield, and M W Quick, and R A Lester
February 2003, Molecular pharmacology,
E B Sheffield, and M W Quick, and R A Lester
January 2005, The Journal of comparative neurology,
E B Sheffield, and M W Quick, and R A Lester
March 2002, The Journal of comparative neurology,
E B Sheffield, and M W Quick, and R A Lester
April 1999, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!