Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli. 1975

Y Anraku, and E Kin, and Y Tanaka

The effects of various energy poisons on oxidation of respiratory substrate, synthesis of cellular ATP, and energy transformation reaction in intact Escherichia coli cells were studied systematically. Various mutants were, therefore, used in which specific functions in the energy-transducing reactions were defective or altered. The energy poisons examined were: sodium azide. DPPA and azidebenzenes which are inhibitors of respiratory-chain phosphorylation, SF6847, and CCCP which are known to be uncouplers, zinc sulfate which is an inhibitor for certain dehydrogenases, and sodium arsenate and sodium fluoride which are inhibitors of glycolytic synthesis of ATP. The preferential inhibitions occurred in the oxidation reactions with certain respiratory substrates by energy poisons used. DPPA inhibited glycerol oxidation much more strongly than succinate oxidation. However, DPPA could inhibit the oxidation of both glycerol 3-phosphate and succinate by membrane fraction strongly while the oxidation of NADH and D-lactate slightly. It inhibited glycerol 3-phosphate dehydrogenase [EC 1.1.2.1] strongly as well as succinate dehydrogenase [EC 1.3.99.1],.but not D-lactate dehydrogenase of membrane fraction. MAB and other azidebenzene derivatives inhibited succinate oxidation preferentially. SF6847 and CCCP inhibited succinate oxidation strongly, while sodium azide inhibited it weakly and these three poisons were less inhibitory for glycerol oxidation. DPPA, sodium azide, SF6847, and CCCP inhibited the synthesis of ATP coupled with respiration but not with glycolysis. Zinc sulfate inhibited the cellular ATP synthesis coupled with either respiration or glycolysis.

UI MeSH Term Description Entries
D007532 Isoleucine An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. Alloisoleucine,Isoleucine, L-Isomer,L-Isoleucine,Isoleucine, L Isomer,L-Isomer Isoleucine
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008773 Methylphenazonium Methosulfate Used as an electron carrier in place of the flavine enzyme of Warburg in the hexosemonophosphate system and also in the preparation of SUCCINIC DEHYDROGENASE. Phenazine Methosulfate,5-Methylphenazinium Methyl Sulfate,5 Methylphenazinium Methyl Sulfate,Methosulfate, Methylphenazonium,Methosulfate, Phenazine,Methyl Sulfate, 5-Methylphenazinium,Sulfate, 5-Methylphenazinium Methyl
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002729 Chloromercuribenzoates Chloride and mercury-containing derivatives of benzoic acid.

Related Publications

Y Anraku, and E Kin, and Y Tanaka
June 1968, The Journal of biological chemistry,
Y Anraku, and E Kin, and Y Tanaka
September 1972, Proceedings of the National Academy of Sciences of the United States of America,
Y Anraku, and E Kin, and Y Tanaka
February 1972, Archives of internal medicine,
Y Anraku, and E Kin, and Y Tanaka
January 1974, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
Y Anraku, and E Kin, and Y Tanaka
December 1967, The Biological bulletin,
Copied contents to your clipboard!