Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation. 1975

D L Sloan, and L A Loeb, and A S Mildvan

A unique conformation of deoxynucleoside triphosphate substrates bound to Escherichia coli DNA polymerase I has been determined by nuclear magnetic resonance techniques. The effects of Mn(II) bound at the active site of the enzyme on the longitudinal (T1p-1) and transverse (T2p-1) relaxation rates of the alpha, beta, and gamma phosphorus atoms and 5 protons of enzyme-bound thymidine 5'-triphosphate (dTTP) were measured at 40.5 MHz (31P), 100 and 220 MHz (1H). From frequency dependence of T1p-1, a correlation time of 7 X 10(-10) s and Mn(II) to proton distances of 10.4, 9.9, 10.3, 10.8, and 8.4 A were calculated for the --CH3, H6, H'1, H'2, and H'4 protons. The calculated Mn(II) to phosphorus distances of 4.2, 4.8, and 3.2 A for the alpha, beta, and gamma phosphorus atoms indicates that Mn(II) corrdinates directly only with the gamma-phosphoryl group and that a puckered triphpsphate conformation exists for the enzyme-bound dTTP. This differs from the binary Mn(II)-dTTP complex in which alpha, beta, and gamma phosphoryl coordination occurs, and a thymine-deoxyribose torsion angly (chi) about the glycosidic bond of 40 degrees is detected. The eight manganese-substrate distances on the enzyme are fit by a unique Mn-dTTP conformation, with a torsion angle equal to 90 degrees, indistinguishable from that found for a deoxynucleotidyl unit in double helical DNA-B. Hence, binding to DNA polymerase appears to adjust the conformation of dTTP for Watson-Crick basepairing. Similarly, the binding of Mn-dATP to DNA polymerase I increased the distances from Mn(II) to the H2, H8, H'1, and H'4 protons of dATP but the adenine-deoxyribose torsion angle of 90 degrees was preserved. Such preorientation of substrates could facilitate incorporation of the complementary nucleotide. When positioned within the DNA structure, the conformation of enzyme-bound Mn-dTTP requires an inline nucleophilic attack on the alpha phosphorus with Mn(II) promoting pyrophosphate departure.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

D L Sloan, and L A Loeb, and A S Mildvan
May 1970, Biochimica et biophysica acta,
D L Sloan, and L A Loeb, and A S Mildvan
January 1974, Methods in enzymology,
D L Sloan, and L A Loeb, and A S Mildvan
August 2015, Journal of the American Chemical Society,
D L Sloan, and L A Loeb, and A S Mildvan
April 1980, FEBS letters,
D L Sloan, and L A Loeb, and A S Mildvan
January 1984, Mutation research,
D L Sloan, and L A Loeb, and A S Mildvan
April 1976, The Journal of biological chemistry,
Copied contents to your clipboard!