Nitric oxide and NK(1)-tachykinin receptors in cyclophosphamide-induced cystitis, in rats. 2000

A B Alfieri, and L X Cubeddu
Department of Pharmacology, School of Pharmacy, Central University of Venezuela, Caracas, Venezuela.

The present study was conducted to investigate the role of NK(1) receptors and of nitric oxide (NO) on the pathogenesis of cyclophosphamide-induced cystitis, in rats. This bladder toxicity was characterized by marked increases in protein plasma extravasation, urothelial damage, edema, white blood cell infiltrates, and vascular congestion. These changes were associated with appearance of Ca(2+)-independent NO-synthase (NOS) activity [characteristic of inducible NOS (iNOS)] in the bladder and with increases in urinary NO metabolites. GR205171, a selective NK(1) antagonist (10-20 mg/kg, i.p.) reduced cyclophosphamide-induced increases in protein plasma extravasation and in the urinary excretion of NO metabolites. N(G)-Nitro-L-arginine (L-NNA) (10 mg/kg, i.p.), a NOS inhibitor, reduced basal and cyclophosphamide-induced increases in NO metabolites and protected against cyclophosphamide-induced protein plasma extravasation. GR205171 had no effect, whereas L-NNA reduced basal NO metabolite excretion. Combined treatment with the NK(1) antagonist and the NO-synthesis inhibitor produced comparable reduction in protein plasma extravasation than that achieved with each drug given separately. Combined drug treatment ameliorated cyclophosphamideinduced urothelial damage, and the extent of edema, vascular congestion, and white blood cell infiltrates in the bladder. In summary, NK(1) receptors and iNOS play a role in NO formation and on cyclophosphamide-induced cystitis. Activation of NK(1) receptors mainly acts through the formation of NO. It is proposed that cyclophosphamide and/or its metabolites would stimulate primary afferent capsaicin-sensitive fibers in the bladder, releasing neuropeptides, which would activate NK(1) receptors. However, additional mechanisms are involved, because neither the NK(1) receptor antagonist nor the NO synthesis inhibitor, either alone or in combination, were able to completely prevent the toxicity.

UI MeSH Term Description Entries
D008297 Male Males
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D010880 Piperidines A family of hexahydropyridines.
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D003556 Cystitis Inflammation of the URINARY BLADDER, either from bacterial or non-bacterial causes. Cystitis is usually associated with painful urination (dysuria), increased frequency, urgency, and suprapubic pain. Cystitides

Related Publications

A B Alfieri, and L X Cubeddu
December 1999, The Journal of urology,
A B Alfieri, and L X Cubeddu
January 1997, The American journal of pathology,
A B Alfieri, and L X Cubeddu
March 2008, European journal of pharmacology,
A B Alfieri, and L X Cubeddu
September 2006, American journal of physiology. Gastrointestinal and liver physiology,
A B Alfieri, and L X Cubeddu
January 2002, European journal of pharmacology,
Copied contents to your clipboard!