Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro. 1975

T J Goud, and C Schotte, and R van Furth

A liquid culture technique for growing mononuclear phagocyte colonies on a glass surface is described. This useful and reliable technique made it possible to study immature mononuclear phagocytes. In the mononuclear phagocyte colonies the cells grow separate from each other in a single layer. Three types of cells are recognized in these colonies, namely nondividing macrophages, and proliferating promonocytes and monoblasts. The macrophage and the promonocyte exhibit the typical characteristics previously demonstrated by the other methods, whereas the monoblast could only be fully characterized by the present liquid culture method. This proliferating cell (labeling index with [3H]thymidine, 92-96%) is almost round (diameters, 10 X 10 mum), has only a small rim of strongly basophilic cytoplasm, almost devoid of granules, and shows a certain degree of ruffling of the cell surface. The monoblast is positive for esterase with alpha-naphthyl butyrate as substrate (91%), for peroxidase (78% in the peroxidase-positive colonies), and lysozyme (43%). The monoblast is able to pinocytize dextran sulphate (15-20%) and to phagocytize opsonized bacteria (20-30%), latex particles (47%), and IgG-coated red cells (96%). IgG receptors (94%) and complement receptors (16%) are present at the cell surface. In these respects the monoblast has the typical characteristics of the mononuclear phagocytes, but its properties show it to be a more immature cell type than the promonocyte. On the basis of these criteria and the sequence of appearance of the different cell types during incubation and during the development of the individual mononuclear phagocyte colony, monoblasts being present before promonocytes appear in the colony, it is concluded that the monoblast is the precursor of the promonocyte. In these cultures granulocyte colonies are also formed, consisting of myeloblasts, (pro)myelocytes, stabs, and polymorphonuclear neutrophils. Besides the typically tight structure of this kind of colony, the granulocytic cells themselves are quite distinct from the mononuclear phagocytes by their morphology, cytochemical characteristics (e.g. all negative for esterase with alpha-naphthyl butyrate, but 96% positive with N-acetyl DL-alanyl 1-naphthylester), functional characteristics (pinocytic index 13-21%; phagocytic index; for opsonized bacteria 15-36%, for latex particles 10%, and for IgG-coated red cells 0%), and their very small number of IgG receptors and lack of complement receptors. On the basis of these criteria, these granulocytic cells are easily distinguished from the immature cells of the mononuclear phagocyte colonies. The present study confirms the conclusion that the mononuclear phagocytes are a separate cell line, quite distinct from the granulocytic series, since even the most immature cells so far identified--the monoblast and the myeloblast--have quite different characteristics.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D008297 Male Males
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D010544 Peroxidases Ovoperoxidase
D010586 Phagocytes Cells that can carry out the process of PHAGOCYTOSIS. Phagocyte,Phagocytic Cell,Phagocytic Cells,Cell, Phagocytic,Cells, Phagocytic
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase

Related Publications

T J Goud, and C Schotte, and R van Furth
April 1981, Cellular immunology,
T J Goud, and C Schotte, and R van Furth
April 1976, Laboratory investigation; a journal of technical methods and pathology,
T J Goud, and C Schotte, and R van Furth
October 2012, Journal of biomolecular screening,
T J Goud, and C Schotte, and R van Furth
June 2011, Blood,
T J Goud, and C Schotte, and R van Furth
December 1971, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T J Goud, and C Schotte, and R van Furth
November 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T J Goud, and C Schotte, and R van Furth
February 2006, Current opinion in immunology,
T J Goud, and C Schotte, and R van Furth
January 1980, Verhandlungen der Deutschen Gesellschaft fur Pathologie,
T J Goud, and C Schotte, and R van Furth
November 1979, Pediatrics,
Copied contents to your clipboard!