Cartilage degradation by stimulated human neutrophils: reactive oxygen species decrease markedly the activity of proteolytic enzymes. 2000

J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Germany. schij@server3.medizin.uni-leipzig.de

BACKGROUND Although neutrophilic granulocytes clearly contribute to cartilage degradation in rheumatic diseases, it is unclear if reactive oxygen species (ROS) or proteolytic enzymes are the most important components in cartilage degradation and how they interact. RESULTS Neutrophils were stimulated by chemicals conferring a different degree of ROS formation and enzyme release. Supernatants of neutrophils were incubated with thin slices of pig articular cartilage. Supernatants of cartilage were assayed by NMR spectroscopy, MALDI-TOF mass spectrometry and relevant biochemical methods. Stimulation conditions of neutrophils correlated well with the extent of cartilage degradation. Due to the release of different enzymes, cartilage degradation could be best monitored by NMR since mainly low-mass degradation products were formed. Astonishingly, the suppression of the formation of ROS resulted in decreased cartilage degradation. CONCLUSIONS ROS formed by neutrophils are not directly involved in cartilage degradation but influence the activity of proteolytic enzymes, which are the main effectors of cartilage degradation.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009861 Onium Compounds Ions with the suffix -onium, indicating cations with coordination number 4 of the type RxA+ which are analogous to QUATERNARY AMMONIUM COMPOUNDS (H4N+). Ions include phosphonium R4P+, oxonium R3O+, sulfonium R3S+, chloronium R2Cl+ Compounds, Onium
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002358 Cartilage, Articular A protective layer of firm, flexible cartilage over the articulating ends of bones. It provides a smooth surface for joint movement, protecting the ends of long bones from wear at points of contact. Articular Cartilage,Articular Cartilages,Cartilages, Articular
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
June 2002, Helicobacter,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
April 2002, Bioorganic chemistry,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
January 2002, Luminescence : the journal of biological and chemical luminescence,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
January 1987, The Journal of clinical investigation,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
March 2011, Veterinary anaesthesia and analgesia,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
August 2005, Osteoarthritis and cartilage,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
April 1993, Biochemical pharmacology,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
December 1997, Biochimica et biophysica acta,
J Schiller, and S Benard, and S Reichl, and J Arnhold, and K Arnold
January 1988, Basic life sciences,
Copied contents to your clipboard!