The effects of motion on trunk biomechanics. 2000

K G Davis, and W S Marras
Biodynamics Laboratory, Room 210, 210 Baker Systems, 1971 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA.

OBJECTIVE To review the literature that evaluates the influence of trunk motion on trunk strength and structural loading. BACKGROUND In recent years, trunk dynamics have been identified as potential risk factors for developing low-back disorders. Consequently, a better understanding of the underlying mechanisms involved in trunk motion is needed. METHODS This review summarizes the results of 53 studies that have evaluated trunk motion and its impact on several biomechanical outcome measures. The biomechanical measures consisted of trunk strength, intra-abdominal pressure, muscle activity, imposed trunk moments, and spinal loads. Each of these biomechanical measures was discussed in relation to the existing knowledge within each plane of motion (extension, flexion, lateral flexion, twisting, and asymmetric extension). RESULTS Trunk strength was drastically reduced as dynamic motion increased, and males were impacted more than females. Intra-abdominal pressure seemed to only be affected by trunk dynamics at high levels of force. Trunk moments were found to increase monotonically with increased trunk motion. Both agonistic and antagonistic muscle activities were greater as dynamic characteristics increased. As a result, the three-dimensional spinal loads increase significantly for dynamic exertions as compared to isometric conditions. CONCLUSIONS Trunk motion has a dramatic affect on the muscle coactivity, which seems to be the underlying source for the decrease strength capability as well as the increased muscle force, IAP, and spinal loads. This review suggests that the ability of the individual to perform a task "safely" might be significantly compromised by the muscle coactivity that accompanies dynamic exertions. It is also important to consider various workplace and individual factors when attempting to reduce the impact of trunk motions during dynamic exertions. Relevance This review provides insight as to why trunk motions are important risk factors to consider when attempting to control low-back disorders in the workplace. It is apparent that trunk motion increases the risk of low-back disorders. To better control low-back disorders in industry, more comprehensive knowledge about the impact of trunk motion is needed. A better understanding of muscle coactivity may ultimately lead to reducing the risk associated with dynamic exertions.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000005 Abdomen That portion of the body that lies between the THORAX and the PELVIS. Abdomens
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012307 Risk Factors An aspect of personal behavior or lifestyle, environmental exposure, inborn or inherited characteristic, which, based on epidemiological evidence, is known to be associated with a health-related condition considered important to prevent. Health Correlates,Risk Factor Scores,Risk Scores,Social Risk Factors,Population at Risk,Populations at Risk,Correlates, Health,Factor, Risk,Factor, Social Risk,Factors, Social Risk,Risk Factor,Risk Factor Score,Risk Factor, Social,Risk Factors, Social,Risk Score,Score, Risk,Score, Risk Factor,Social Risk Factor

Related Publications

K G Davis, and W S Marras
July 2009, The spine journal : official journal of the North American Spine Society,
K G Davis, and W S Marras
January 1988, Exercise and sport sciences reviews,
K G Davis, and W S Marras
January 2000, Journal of rehabilitation research and development,
K G Davis, and W S Marras
December 1989, Human factors,
K G Davis, and W S Marras
August 2011, Clinical biomechanics (Bristol, Avon),
K G Davis, and W S Marras
February 2008, Human movement science,
K G Davis, and W S Marras
December 2010, Applied ergonomics,
Copied contents to your clipboard!