The role of interleukin 6 in interferon-gamma production in thermally injured mice. 2000

E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.

Following traumatic injury, patients suffer from compromised immunity increasing their susceptibility to infection. Previous studies from this laboratory demonstrated that female BALB/c mice subjected to a 15% total body surface area (TBSA) scald injury exhibit a decrease in cell-mediated immunity 10 days post-burn. Studies described herein revealed that concanavalin A (Con A; 2 microg/ml)-stimulated splenocytes from sham treated animals produced 3557+/-853 pg/ml of IFN-gamma while splenocytes from burn injured animals released two-fold more cytokine (P<0.05). To determine whether leukocyte production of IFN-gamma was under the influence of macrophages, splenic macrophage supernatants generated from burned animals were incubated with splenic lymphocytes from sham and burn animals. The amount of IFN-gamma released by lymphocytes from sham animals increased when cultured with macrophages from burned mice (P<0.05). This suggests that the increase in IFN-gamma production by unfractionated splenocytes in burned mice relative to sham treated animals is macrophage-dependent. Macrophage supernatants from burned mice released twice as much IL-6 as supernatants from sham animals (P<0.05), and when IL-6 was blocked in vivo, the amount of IFN-gamma production in burned mice decreased to sham levels (P<0.05). Thus, IL-6 mediates IFN-gamma production following burn.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females

Related Publications

E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
October 2002, Shock (Augusta, Ga.),
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
January 1984, Journal of interferon research,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
January 1993, Autoimmunity,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
January 1991, European journal of immunology,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
December 1995, The American journal of pathology,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
February 1991, The Journal of clinical investigation,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
May 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
April 2001, Cytokine,
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
October 1997, Shock (Augusta, Ga.),
E A Durbin, and M S Gregory, and K A Messingham, and C V Fontanilla, and L A Duffner, and E J Kovacs
December 2001, Journal of leukocyte biology,
Copied contents to your clipboard!