Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa. 2000

J S Penn, and S Li, and M I Naash
Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. john.penn@mcmail.vanderbilt.edu

OBJECTIVE Loss of retinal capillaries is an inherent component of late stage autosomal dominant retinitis pigmentosa (ADRP). This study examined the hypothetical role of tissue hyperoxia in this vascular attenuation process and tested the potential of ambient hypoxia to reverse it. METHODS Transgenic mice expressing a mutant opsin gene with a 3-bp deletion of isoleucine at codon 255/256 were used. This model is characterized by early onset of a rapidly progressing retinal degeneration that by postnatal day (P)20 results in the loss of all but one row of photoreceptor nuclei. At P20 some mice were placed in 12% oxygen until they were euthanatized at P26. The remainder were maintained in normoxia and killed at the same age. Retinas were dissected, stained for ADPase, and flat-mounted. RESULTS Deep plexus capillary density was significantly different in normoxic normals versus transgenics at 20 days of age (P: </= 0. 005). An additional 65% reduction of capillary density occurred within the deep plexus of normoxic transgenics between P20 and P26 (P: </= 0.005). Ambient hypoxia between days P20 and P26 reversed this trend, causing an increase in deep capillary plexus density of nearly 100% (P: </= 0.001). CONCLUSIONS This model of ADRP demonstrates two important features of human retinitis pigmentosa: photoreceptor cell death and subsequent retinal capillary atrophy. Low ambient oxygen was used to reverse the capillary atrophy and to stimulate new capillary growth, implying that retinal oxygen tension may link these two features of the pathology. The implications of this study hold importance for strategies designed to treat retinitis pigmentosa with retinal cell transplantation.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001081 Apyrase A calcium-activated enzyme that catalyzes the hydrolysis of ATP to yield AMP and orthophosphate. It can also act on ADP and other nucleoside triphosphates and diphosphates. EC 3.6.1.5. ADPase,ATP-Diphosphatase,Adenosine Diphosphatase,ADP Phosphohydrolase,ATP Diphosphohydrolase,ATP-ADPase,ATP ADPase,ATP Diphosphatase,Diphosphatase, Adenosine,Diphosphohydrolase, ATP,Phosphohydrolase, ADP
D001284 Atrophy Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes. Atrophies

Related Publications

J S Penn, and S Li, and M I Naash
November 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J S Penn, and S Li, and M I Naash
January 2018, Advances in experimental medicine and biology,
J S Penn, and S Li, and M I Naash
February 2021, American journal of human genetics,
J S Penn, and S Li, and M I Naash
January 2012, Advances in experimental medicine and biology,
J S Penn, and S Li, and M I Naash
January 1993, Oftalmologia (Bucharest, Romania : 1990),
Copied contents to your clipboard!