Platelet-derived growth factor and basic fibroblast growth factor regulate cell proliferation and the expression of notch-1 receptor in a new oligodendrocyte cell line. 2000

E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
Mental Retardation Research Center and Brain Research Institute, Medical School, University of California, Los Angeles, California 90095, USA.

We generated a new cell line, N38, by conditionally immortalizing mouse oligodendrocytes (OLs) at early stages of maturation. The morphology and marker expression pattern suggest N38 cells are similar to immature OLs. N38 cells were sensitive to changes in serum concentrations, and forcing the cells to differentiate in low serum at 39 degrees C significantly decreased the survival of the cells. Importantly, addition of PDGFaa, bFGF or astrocyte-conditioned medium had protective effects on the cells, by increasing cell proliferation but not cell differentiation. This effect was receptor-mediated. Exposure of N38 cells to differentiating signals such as retinoic acid did not cause further differentiation of the cells. The N38 cell line expresses the vertebrate homolog of the Drosophila notch-1 receptor, a molecule that appears to regulate OL differentiation. Notch-1 receptor was homogeneously distributed in the somas of N38 cells. Incubation of N38 cells with either PDGFaa or bFGF, however, induced a polarized distribution of the receptor in the majority of the cells as well as an upregulation of receptor protein levels. The upregulation of molecules, such the notch-1 receptor, in pathways that control differentiation might be an important mechanism for keeping OL precursors in an undifferentiated state during their exit of the germinal layer and migration in the developing central nervous system. This OL cell line might constitute a suitable model for studies of regulatory mechanisms at this stage of OL differentiation.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein

Related Publications

E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
June 1997, Molecules and cells,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
March 2021, Glia,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
October 1997, Brain research,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
May 1993, Journal of cellular physiology,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
December 1993, The Journal of clinical investigation,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
July 1997, Nippon Ganka Gakkai zasshi,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
August 2008, The Journal of biological chemistry,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
January 2000, Pediatric surgery international,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
July 2005, International journal of oral and maxillofacial surgery,
E R Bongarzone, and S Byravan, and M I Givogri, and V Schonmann, and A T Campagnoni
November 2000, Japanese journal of pharmacology,
Copied contents to your clipboard!