Differences in the mechanism for high- versus moderate-density fibroblast-populated collagen lattice contraction. 2000

H P Ehrlich, and T Rittenberg
Section of Plastic and Reconstructive Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA. pehrlich@psu.edu

The free-floating fibroblast-populated collagen lattice (FPCL) model introduced by Bell contains 0.5 x 10(5) cell/ml and here is defined as a moderate-density FPCL (MD-FPCL). One modification of the model is to increase the cell density by a factor of 10, where 5 x 10(5) cells/ml defines a high-density FPCL (HD-FPCL). The initial detection of HD-FPCL contraction is 2 h, whereas MD-FPCL is later, 6 h. A contracted HD-FPCL has a doughnut-like appearance, due to the high density of cells accumulating at the periphery. A contracted MD-FPCL is a flattened disc. The compacted collagen of MD-FPCL lattice exhibits a strong birefringence pattern due to organized collagen fiber bundles. In contracted HD-FPCL, a minimal birefringence develops, indicating minimal organization of collagen fiber bundles. MD-FPCL contraction was reduced with less than 10% serum; the disruption of microtubules, uncoupling of gap junctions, inhibition of tyrosine kinases, and addition of a blocking antibody to alpha2beta1 collagen integrin. Making HD-FPCL with only 1% serum or including the inhibitory agents had only minimal affect on lattice contraction. On the other hand, platelet-derived growth factor stimulated HD-FPCL contraction but had no influence on MD-FPCL contraction. It is suggested that the mechanism for HD-FPCL contraction is limited to the process of cells spreading. HD-FPCL contraction is independent of collagen organization, microtubules, gap junctions, alpha2beta1 integrin, and tyrosine phosphorylation. MD-FPCL contraction involves collagen organization and is optimized by the involvement of microtubules, gap junctions, alpha2beta1 integrin, and tyrosine phosphorylation. When studying cell physiology in a collagen matrix, cell-density influences need to be considered.

UI MeSH Term Description Entries
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical

Related Publications

H P Ehrlich, and T Rittenberg
January 2013, Methods in molecular biology (Clifton, N.J.),
H P Ehrlich, and T Rittenberg
December 2002, Biotechnology and applied biochemistry,
H P Ehrlich, and T Rittenberg
January 1997, Lasers in surgery and medicine,
H P Ehrlich, and T Rittenberg
January 2004, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society,
H P Ehrlich, and T Rittenberg
January 2006, British journal of pharmacology,
H P Ehrlich, and T Rittenberg
January 2003, Methods in molecular medicine,
H P Ehrlich, and T Rittenberg
January 1995, Biomaterials,
Copied contents to your clipboard!