Effects of chlorpromazine hydrochloride on bile salt synthesis, bile formation and biliary lipid secretion in the rhesus monkey: a model for chlorpromazine-induced cholestasis. 1979

E Ros, and D M Small, and M C Carey

We studied the acute effects of intravenous infusions of chlorpromazine hydrochloride on bile salt synthesis, bile formation and biliary lipid secretion in the alert female Rhesus monkey prepared with a total biliary fistula and in a steady bile salt secretory state. In twelve studies (three animals), five doses of radiolabelled chlorpromazine hydrochloride (1-10 mg identical to 2.8-28 mumol/kg) were infused intravenously for 1 h in random order. Cholestasis was induced within minutes in all experiments. The radiolabel appeared rapidly in bile, with similar recoveries in bile and urine and a 90% total cumulative output in 4 days. Both bile flow, bile salt and other biliary lipid outputs were inhibited in a dose related and reversible manner. The apparent bile salt independent bile flow was consistently abolished, and a prompt return to basal values occurred when biliary concentration of the drug and metabolities fell below 1-2 mM. When chlorpromazine hydrochloride was infused at three doses (2.5, 5.0 and 10.0 mg identical to 7-28 mumol/kg) during constant intravenous infusion of 14C sodium taurocholate (300 mumol/h), bile flow, total bile salt output and 14C taurocholate output decreased within minutes. This was accompanied by a progressive rise in the serum 14C taurocholate concentration. After 90 min the taurocholate specific activity in bile increased significantly indicating that bile salt synthesis was inhibited. Secretion of retained bile salts and reversal of inhibition of bile salt synthesis occurred with time: the course of both events was correlated with the dose of the drug. Thus, in monkeys, chlorpromazine hydrochloride induces reversible, dose related cholestasis suppression of the bile salt dependent and independent flow, inhibition of bile salt synthesis and impairment of biliary lipid secretion. We suggest that these effects are due to both bile salt-chlorpromazine interactions and the effect of the latter on canalicular and other membranes.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D002746 Chlorpromazine The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. Aminazine,Chlorazine,Chlordelazine,Chlorpromazine Hydrochloride,Contomin,Fenactil,Largactil,Propaphenin,Thorazine,Hydrochloride, Chlorpromazine
D002779 Cholestasis Impairment of bile flow due to obstruction in small bile ducts (INTRAHEPATIC CHOLESTASIS) or obstruction in large bile ducts (EXTRAHEPATIC CHOLESTASIS). Bile Duct Obstruction,Biliary Stasis,Bile Duct Obstructions,Biliary Stases,Cholestases,Duct Obstruction, Bile,Duct Obstructions, Bile,Obstruction, Bile Duct,Obstructions, Bile Duct,Stases, Biliary,Stasis, Biliary
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D013656 Taurocholic Acid The product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic. Cholyltaurine,Taurine Cholate,Taurocholate,Sodium Taurocholate,Taurocholate Sodium,Taurocholic Acid, (5 alpha)-Isomer,Taurocholic Acid, (7 beta)-Isomer,Taurocholic Acid, Monolithium Salt,Taurocholic Acid, Monosodium Salt,Taurocholate, Sodium

Related Publications

E Ros, and D M Small, and M C Carey
December 1975, The Journal of clinical investigation,
E Ros, and D M Small, and M C Carey
January 1992, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
E Ros, and D M Small, and M C Carey
October 1979, Canadian journal of physiology and pharmacology,
E Ros, and D M Small, and M C Carey
January 1979, Pharmacology,
E Ros, and D M Small, and M C Carey
November 1994, Digestive diseases and sciences,
E Ros, and D M Small, and M C Carey
September 1997, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!