| D007251 |
Influenza, Human |
An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia. |
Grippe,Human Flu,Human Influenza,Influenza in Humans,Influenza,Flu, Human,Human Influenzas,Influenza in Human,Influenzas,Influenzas, Human |
|
| D009980 |
Influenza A virus |
The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. |
Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague |
|
| D010614 |
Pharynx |
A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx). |
Throat,Pharynxs,Throats |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001715 |
Bird Diseases |
Diseases of birds not considered poultry, therefore usually found in zoos, parks, and the wild. The concept is differentiated from POULTRY DISEASES which is for birds raised as a source of meat or eggs for human consumption, and usually found in barnyards, hatcheries, etc. |
Avian Diseases,Avian Disease,Bird Disease,Disease, Avian,Disease, Bird,Diseases, Avian,Diseases, Bird |
|
| D001717 |
Birds |
Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves. |
Aves,Bird |
|
| D012680 |
Sensitivity and Specificity |
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) |
Specificity,Sensitivity,Specificity and Sensitivity |
|
| D014763 |
Viral Matrix Proteins |
Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. |
Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins |
|
| D016133 |
Polymerase Chain Reaction |
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. |
Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain |
|