Clustering of two fragile sites and seven homeobox genes in human chromosome region 2q31-->q32.1. 2000

M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Roma, Italia.

In this study we have used FISH to examine the relationship between a group of homeobox genes, namely DLX1/DLX2, EVX2 and four HOXD genes (10, 11, 12, 13), that map to region q31 on chromosome 2, and the FRA2G and FRA2H fragile sites located at 2q31 and 2q32.1 respectively. Our results indicate that these homeobox genes lie between the two fragile regions.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002873 Chromosome Fragility Susceptibility of chromosomes to breakage leading to translocation; CHROMOSOME INVERSION; SEQUENCE DELETION; or other CHROMOSOME BREAKAGE related aberrations. Chromosomal Fragility,Fragility, Chromosomal,Fragility, Chromosome
D002889 Chromosomes, Human, Pair 2 A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification. Chromosome 2
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D016590 Aphidicolin An antiviral antibiotic produced by Cephalosporium aphidicola and other fungi. It inhibits the growth of eukaryotic cells and certain animal viruses by selectively inhibiting the cellular replication of DNA polymerase II or the viral-induced DNA polymerases. The drug may be useful for controlling excessive cell proliferation in patients with cancer, psoriasis or other dermatitis with little or no adverse effect upon non-multiplying cells. Aphidicolin, (3-S-(3alpha,4beta,4abeta,6aalpha,8alpha,9alpha,11aalpha,11balpha))-Isomer,ICI-69653,NSC-234714,NSC-351140,ICI 69653,ICI69653,NSC 234714,NSC 351140,NSC234714,NSC351140
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH

Related Publications

M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
April 1987, Human genetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
January 1990, Cancer genetics and cytogenetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
January 1985, Cancer genetics and cytogenetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
January 2007, Annual review of genetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
July 1987, American journal of human genetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
February 2004, The Lancet. Oncology,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
July 1988, Cancer genetics and cytogenetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
June 1990, American journal of medical genetics,
M Z Limongi, and F Pelliccia, and L Gaddini, and A Rocchi
November 1990, Human genetics,
Copied contents to your clipboard!