Electrophoretic and immunochemical characterization of allergenic proteins in buckwheat. 2000

M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
Department of Food Science, University of Guelph, Ont., Canada.

BACKGROUND Buckwheat allergies are not common, however, it is considered to be a very potent allergen. Ingestion of small amounts has been found to produce anaphylactic reactions, particularly in children. Identification and characterization of the major allergen(s) in buckwheat are currently underway, however, there are some discrepancies in the findings. METHODS Identification of the major allergen(s) was determined through Western blotting using buckwheat-allergic patients' sera. Once the allergenic proteins were identified, they were purified, their IgE-binding activity assessed through an indirect ELISA and the N-terminal amino acid sequence completed. To assess the stability of the IgE-binding epitopes, protein fractions were exposed to various treatments and assayed using an indirect ELISA. Lastly, the presence of anti-buckwheat IgG in the patients' sera was analyzed through Western blotting and ELISA. RESULTS IgE binding was detected to proteins with molecular masses of approximately 14 and 18 kDa. N-terminal sequencing was completed and found to share some homology with rice proteins associated with rice allergies and cross-allergenicity with buckwheat proteins. When the water-soluble protein fraction was heated, exposed to acidic and alkaline conditions and fully denatured, IgE-binding activity was reduced. When the fraction was partially denatured through urea, IgE-binding activity increased. Furthermore, IgG-binding activity was detected with proteins only above the 20 kDa region. CONCLUSIONS Proteins with molecular masses around 14 and 18 kDa were identified as the major allergenic proteins in the buckwheat-allergic patients' sera tested in this study. Results also indicate that these two proteins possess IgE-binding capability.

UI MeSH Term Description Entries
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
December 2022, Food chemistry. Molecular sciences,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
December 1984, Biochimica et biophysica acta,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
January 1966, Acta allergologica,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
July 2014, Food chemistry,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
February 1980, Biokhimiia (Moscow, Russia),
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
February 2013, Nutrition research and practice,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
December 2008, Planta medica,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
January 1982, Archives of biochemistry and biophysics,
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
August 1973, Polski tygodnik lekarski (Warsaw, Poland : 1960),
M A Yoshimasu, and J W Zhang, and S Hayakawa, and Y Mine
October 1960, Genetics,
Copied contents to your clipboard!