Atomic force microscopy to study direct neurite-mast cell (RBL) communication in vitro. 2000

H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, 467-8603, Nagoya, Japan.

Communication between nerves and mast cells is a prototypic demonstration of neuroimmune interaction. We used an in vitro co-culture approach comprising cultured murine superior cervical ganglia (SCG) and rat basophilic leukemia (RBL-2H3) cells. Atomic force microscopy (AFM) showed how neurites attached to a pseudopodium or a cell body of an RBL cell. After stimulation of SCG neurites with bradykinin or scorpion venom, RBL cells attached to neurites spread and flattened, and several discharged granules (0. 5-1.0 microm in diameter) were found on the surface of the RBL cells. A neurokinin (NK)-1 receptor (i.e. substance P receptor) antagonist prevented the RBL degranulation. The results showed that activation of the SCG neurites with bradykinin or scorpion venom was able to elicit degranulation in RBL cells which were attached to neurites.

UI MeSH Term Description Entries
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D011554 Pseudopodia A dynamic actin-rich extension of the surface of an animal cell used for locomotion or prehension of food. Axopodia,Filopodia,Lamellipodia,Lobopodia,Microspikes, Cell Surface,Reticulopodia,Pseudopodium,Cell Surface Microspike,Cell Surface Microspikes,Lamellipodias,Microspike, Cell Surface,Surface Microspike, Cell,Surface Microspikes, Cell
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012604 Scorpion Venoms Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic. Scorpion Toxin,Scorpion Toxins,Scorpion Venom Peptide,Tityus serrulatus Venom,Scorpion Venom,alpha-Scorpion Toxin,beta-Scorpion Toxin,gamma-Scorpion Toxin,Peptide, Scorpion Venom,Toxin, Scorpion,Toxin, alpha-Scorpion,Toxin, beta-Scorpion,Venom Peptide, Scorpion,Venom, Scorpion,Venom, Tityus serrulatus,alpha Scorpion Toxin,beta Scorpion Toxin,gamma Scorpion Toxin
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
September 1999, Journal of immunology (Baltimore, Md. : 1950),
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
November 2016, Scanning,
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
January 2021, Methods in molecular biology (Clifton, N.J.),
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
September 1999, Immunology letters,
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
December 2002, American journal of physiology. Cell physiology,
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
June 2000, Immunology letters,
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
August 2014, Microscopy (Oxford, England),
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
June 2009, The Review of scientific instruments,
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
May 2004, Cellular and molecular biology (Noisy-le-Grand, France),
H Ohshiro, and R Suzuki, and T Furuno, and M Nakanishi
January 2010, Journal of pharmacological sciences,
Copied contents to your clipboard!