Role of potassium conductances in determining input resistance of developing brain stem motoneurons. 2000

W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA. cameronw@ohsu.edu

The role of potassium conductances in determining input resistance was studied in 166 genioglossal (GG) motoneurons using sharp electrode recording in brain stem slices of the rats aged 5-7 days, 13-15 days, and 19-24 days postnatal (P). A high magnesium (Mg(2+); 6 mM) perfusate was used to block calcium-mediated synaptic release while intracellular or extracellular cesium (Cs(+)) and/or extracellular tetraethylammonium (TEA) or barium (Ba(2+)) were used to block potassium conductances. In all cases, the addition of TEA to the high Mg(2+) perfusate generated a larger increase in both input resistance (R(n)) and the first membrane time constant (tau(0)) than did high Mg(2+) alone indicating a substantial nonsynaptic contribution to input resistance. With intracellular injection of Cs(+), GG motoneurons with lower resistance (<40 MOmega), on the average, showed a larger percent increase in R(n) than cells with higher resistance (>40 MOmega). There was also a significant increase in the effect of internal Cs(+) on R(n) and tau(0) with age. The largest percent increase (67%) in the tau(0) due to intracellular Cs(+) occurred at P13-15, a developmental stage characterized by a large reduction in specific membrane resistance. Addition of external Cs(+) blocked conductances (further increasing R(n) and tau(0)) beyond those blocked by the TEA perfusate. Substitution of external calcium with 2 mM barium chloride produced a significant increase in both R(n) and tau(0) at all ages studied. The addition of either intracellular Cs(+) or extracellular Ba(2+) created a depolarization shift of the membrane potential. The amount of injected current required to maintain the membrane potential was negatively correlated with the control R(n) of the cell at most ages. Thus low resistance cells had, on the average, more Cs(+)- and Ba(2+)-sensitive channels than their high resistance counterparts. There was also a disproportionately larger percent increase in tau(0) as compared with R(n) for both internal Cs(+) and external Ba(2+). Based on a model by Redman and colleagues, it might be suggested that the majority of these potassium conductances underlying membrane resistance are initially located in the distal dendrites but become more uniformly distributed over the motoneuron surface in the oldest animals.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
June 2000, Journal of neurophysiology,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
December 1985, Neuroscience,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
August 2011, Journal of computational neuroscience,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
June 1997, Journal of neurophysiology,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
June 1993, Journal of neurophysiology,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
January 1988, Society of General Physiologists series,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
January 1999, Journal of physiology, Paris,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
June 1993, Journal of neurophysiology,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
March 1981, Behavioural brain research,
W E Cameron, and P A Núñez-Abades, and I A Kerman, and T M Hodgson
November 1973, Journal of neurophysiology,
Copied contents to your clipboard!