Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl's inferior colliculus. 2000

C H Keller, and T T Takahashi
Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA. keller@uoneuro.uoregon.edu

The spiking pattern evoked in cells of the owl's inferior colliculus by repeated presentation of the same broadband noise was found to be highly reproducible and synchronized with the temporal features of the noise stimulus. The pattern remained largely unchanged when the stimulus was presented from spatial loci that evoke similar average firing rates. To better understand this patterning, we computed the pre-event stimulus ensemble (PESE)-the average of the stimuli that preceded each spike. Computing the PESE by averaging the pressure waveforms produced a noisy, featureless trace, suggesting that the patterning was not synchronized to a particular waveform in the fine structure. By contrast, computing the PESE by averaging the stimulus envelope revealed an average envelope waveform, the "PESE envelope," typically having a peak preceded by a trough. Increasing the overall stimulus level produced PESE envelopes with higher amplitudes, suggesting a decrease in the jitter of the cell's response. The effect of carrier frequency on the PESE envelope was investigated by obtaining a cell's response to broadband noise and either estimating the PESE envelope for each spectral band or by computing a spectrogram of the stimulus prior to each spike. Either method yielded the cell's PESE spectrogram, a plot of the average amplitude of each carrier-frequency component at various pre-spike times. PESE spectrograms revealed surfaces with peaks and troughs at certain frequencies and pre-spike times. These features are collectively called the spectrotemporal receptive field (STRF). The shape of the STRF showed that in many cases, the carrier frequency can affect the PESE envelope. The modulation transfer function (MTF), which describes a cell's ability to respond to time-varying amplitudes, was estimated with sinusoidally amplitude-modulated (SAM) noises. Comparison of the PESE envelope with the MTF in the time and frequency domains showed that the two were closely matched, suggesting that a cell's response to SAM stimuli is largely predictable from its response to a noise-modulated carrier. The STRF is considered to be a model of the linear component of a system's response to dynamic stimuli. Using the STRF, we estimated the degree to which we could predict a cell's response to an arbitrary broadband noise by comparing the convolution of the STRF and the envelope of the noise with the cell's post-stimulus time histogram to the same noise. The STRF explained 18-46% of the variance of a cell's response to broadband noise.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009622 Noise Any sound which is unwanted or interferes with HEARING other sounds. Noise Pollution,Noises,Pollution, Noise
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D005260 Female Females
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001307 Auditory Perception The process whereby auditory stimuli are selected, organized, and interpreted by the organism. Auditory Processing,Perception, Auditory,Processing, Auditory

Related Publications

C H Keller, and T T Takahashi
January 2012, Frontiers in neural circuits,
C H Keller, and T T Takahashi
May 1985, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
C H Keller, and T T Takahashi
January 2022, The European journal of neuroscience,
C H Keller, and T T Takahashi
October 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C H Keller, and T T Takahashi
December 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C H Keller, and T T Takahashi
January 1985, Journal of neurophysiology,
C H Keller, and T T Takahashi
November 2005, The Journal of comparative neurology,
Copied contents to your clipboard!