Center-surround interactions in the middle temporal visual area of the owl monkey. 2000

R T Born
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115-5701, USA. rborn@hms.harvard.edu

Microelectrode recording and 2-deoxyglucose (2dg) labeling were used to investigate center-surround interactions in the middle temporal visual area (MT) of the owl monkey. These techniques revealed columnar groups of neurons whose receptive fields had opposite types of center-surround interaction with respect to moving visual stimuli. In one type of column, neurons responded well to objects such as a single bar or spot but poorly to large textured stimuli such as random dots. This was often due to the fact that the receptive fields had antagonistic surrounds: surround motion in the same direction as that preferred by the center suppressed responses, thus rendering these neurons unresponsive to wide-field motion. In the second set of complementary, interdigitated columns, neuronal receptive fields had reinforcing surrounds and responded optimally to wide-field motion. This functional organization could not be accounted for by systematic differences in binocular disparity. Within both column types, neurons whose receptive fields exhibited center-surround interactions were found less frequently in the input layers compared with the other layers. Additional tests were done on single units to examine the nature of the center-surround interactions. The direction tuning of the surround was broader than that of the center, and the preferred direction, with respect to that of the center, tended to be either in the same or opposite direction and only rarely in orthogonal directions. Surround motion at various velocities modulated the overall responsiveness to centrally placed moving stimuli, but it did not produce shifts in the peaks of the center's tuning curves for either direction or speed. In layers 3B and 5 of the local motion processing columns, a number of neurons responded only to local motion contrast but did so over a region of the visual field that was much larger than the optimal stimulus size. The central feature of this receptive field type was the generalization of surround antagonism over retinotopic space-a property similar to other "complex" receptive fields described previously. The columnar organization of different types of center-surround interactions may reflect the initial segregation of visual motion information into wide-field and local motion contrast systems that serve complementary functions in visual motion processing. Such segregation appears to occur at later stages of the macaque motion processing stream, in the medial superior temporal area (MST), and has also been described in invertebrate visual systems where it appears to be involved in the important function of distinguishing background motion from object motion.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D016645 Aotidae A family of the New World monkeys inhabiting the forests of South and Central America. There is a single genus (Aotus) and several species occurring in this family, including AOTUS TRIVIRGATUS (Northern night monkeys). Aotus,Douroucouli,Monkey, Night,Monkey, Owl,Night Monkey,Owl Monkey,Aotinae,Night Monkeys,Owl Monkeys

Related Publications

Copied contents to your clipboard!