Adenosine action on interneurons and synaptic transmission onto interneurons in rat hippocampus in vitro. 2000

H Li, and J L Henry
Departments of Psychiatry and Physiology, 3655 Drummond St., McGill University, H3G 1Y6, Montreal, QC, Canada. hli@usuhs.mil

To investigate the action of adenosine on interneurons as well as on excitatory synaptic transmission onto interneurons in the hippocampus, intracellular recordings were made from electrophysiologically identified interneurons in the CA1 region of the hippocampal slice in vitro. The effects of adenosine and the preferential adenosine A1 receptor agonist, chloroadenosine, were examined. Application of 50 microM adenosine and 20 microM chloroadenosine to the bath produced a hyperpolarization of 5.6+/-1.6 (n=5) and 6.1+/-1.4 mV (n=6), respectively, as well as a decrease in membrane input resistance of 18.1+/-3.5% (n=5) and 18.5+/-1.4% (n=6), respectively. Adenosine depressed the postsynaptic potentials (PSPs) elicited in the interneurons by stimulation of Schaffer collateral fibers by 73+/-6.8% (n=5). The amplitude and the duration of the afterhyperpolarization which followed the spike of the action potential were attenuated by 48+/-6.9% and 31+/-8.6%, respectively (n=5). Chloroadenosine depressed the evoked PSPs in these interneurons by 61.2+/-2.7% (n=6) and depressed the duration and the amplitude of the afterhyperpolarization by 85.2+/-4.5% and by 72.6+/-4.8%, respectively (n=6). The data show that adenosine and chloroadenosine directly inhibit hippocampal CA1 interneurons by blocking the synaptic input, by hyperpolarizing the membrane potential and by depressing the afterhyperpolarization following individual action potential spikes. It is proposed that adenosine A1 receptors are present at pre- and/or postsynaptic sites of interneuron synapses in the hippocampal CA1 region. The present findings demonstrate that adenosine A1 receptor activation in CA1 interneurons is able to modulate the excitatory synaptic input to, and excitability of, these neurons. Thus, as adenosine is released during ischemia and epilepsy, adenosine may protect both interneurons and pyramidal cells from glutamate excitotoxicity through activation of adenosine A1 receptors on these neurons in the hippocampus.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000889 Anti-Arrhythmia Agents Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade. Anti-Arrhythmia Agent,Anti-Arrhythmia Drug,Anti-Arrhythmic,Antiarrhythmia Agent,Antiarrhythmia Drug,Antiarrhythmic Drug,Antifibrillatory Agent,Antifibrillatory Agents,Cardiac Depressant,Cardiac Depressants,Myocardial Depressant,Myocardial Depressants,Anti-Arrhythmia Drugs,Anti-Arrhythmics,Antiarrhythmia Agents,Antiarrhythmia Drugs,Antiarrhythmic Drugs,Agent, Anti-Arrhythmia,Agent, Antiarrhythmia,Agent, Antifibrillatory,Agents, Anti-Arrhythmia,Agents, Antiarrhythmia,Agents, Antifibrillatory,Anti Arrhythmia Agent,Anti Arrhythmia Agents,Anti Arrhythmia Drug,Anti Arrhythmia Drugs,Anti Arrhythmic,Anti Arrhythmics,Depressant, Cardiac,Depressant, Myocardial,Depressants, Cardiac,Depressants, Myocardial,Drug, Anti-Arrhythmia,Drug, Antiarrhythmia,Drug, Antiarrhythmic,Drugs, Anti-Arrhythmia,Drugs, Antiarrhythmia,Drugs, Antiarrhythmic
D015762 2-Chloroadenosine 2-Chloroadenosine. A metabolically stable analog of adenosine which acts as an adenosine receptor agonist. The compound has a potent effect on the peripheral and central nervous system. 2 Chloroadenosine
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

H Li, and J L Henry
January 1991, Doklady Akademii nauk SSSR,
H Li, and J L Henry
May 1980, British journal of pharmacology,
H Li, and J L Henry
March 1982, Brain research,
H Li, and J L Henry
June 2003, The European journal of neuroscience,
Copied contents to your clipboard!