Vascular catabolism of bradykinin in the isolated perfused rat kidney. 2000

K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
Institut de Pharmacologie, Faculté de Médecine, 11 Rue Humann, 67085 Cedex, Strasbourg, France.

Kinins in the circulation are rapidly metabolized by several different peptidases. The purpose of this study was to evaluate the contribution of membrane-bound peptidases to kinin metabolism in the renal circulation. Experiments were performed in vitro, in isolated rat kidneys perfused at a constant flow rate (8 ml/min) with Tyrode's solution. The effects of peptidase inhibitors were evaluated on the functional vasodilator response caused by bradykinin (30 nM) or [Tyr(Me)(8)]bradykinin (10 nM) via activation of bradykinin B2 receptors in kidneys precontracted with prostaglandin F2alpha. Angiotensin converting enzyme inhibitors, enalaprilat (3 microM), ramiprilat (1 microM) or lisinopril (1 microM), increased the bradykinin-induced renal vasodilation by 40% or more. Inhibitors of neutral endopeptidase (thiorphan or phosphoramidon, 10 microM), basic carboxypeptidase (DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid or MGTPA, 10 microM) and aminopeptidase P (apstatin, 20 microM) however did not enhance the renal vasodilator response elicited by kinins, whatever tested alone or in the presence of lisinopril. These findings indicate that angiotensin converting enzyme is the major peptidase whose inhibition potentiates the renal bradykinin B2 receptor mediated vasodilator response of kinins. The relative contribution in this potentiation of inhibition of kinin inactivation and of cross-talk of angiotensin converting enzyme with bradykinin B2 receptor remains however to be clarified.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation

Related Publications

K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
August 1997, Archives des maladies du coeur et des vaisseaux,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
May 1999, Shock (Augusta, Ga.),
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
June 1996, European journal of pharmacology,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
October 1996, European journal of pharmacology,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
March 1992, Journal of hepatology,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
September 1976, Archives internationales de pharmacodynamie et de therapie,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
January 1981, Journal de pharmacologie,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
December 1978, Clinical science and molecular medicine. Supplement,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
January 1981, Methods in enzymology,
K Bagaté, and L Develioglu, and M Grima, and W De Jong, and W H Simmons, and J L Imbs, and M Barthelmebs
January 2007, Autonomic & autacoid pharmacology,
Copied contents to your clipboard!