Regulation of p38 mitogen-activated protein kinase during NK cell activation. 2000

C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester 55905, USA.

The mitogen-activated protein kinase (MAPK) p38 modulates a variety of cellular functions, including proliferation, differentiation and cell death. However, we report here a novel function for p38, i.e. the regulation of cytotoxic lymphocyte-mediated cytotoxicity. Stimulation of NK cells by either cross-linking of their FcgammaRIII receptors or by binding to NK-sensitive target cells induces the phosphorylation and activation of p38, and also of its upstream regulators MKK3/MKK6. Pharmacologic analyses suggest that Src-family and Syk-family protein tyrosine kinases couple the NK cell surface receptors to p38 activation. The role of p38 in the cytotoxic function of NK cells was tested by treatment of NK cells with the cell-permeable, p38-specific inhibitor SB203580. Interestingly, exposure to the drug reduced both antibody-dependent cellular cytotoxicity and natural cytotoxicity, but maximal inhibitory concentrations resulted in only partial inhibition. Collectively, these results suggest that the p38 MAPK pathway is stimulated during the development of NK cell-mediated cytotoxicity and that efficient killing is influenced by both p38-dependent and p38-independent pathways. More broadly, this study identifies the regulation of cell-mediated killing as a novel role for p38 in cytotoxic lymphocytes.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.

Related Publications

C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
May 2018, Proceedings of the National Academy of Sciences of the United States of America,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
January 2009, International journal of immunopathology and pharmacology,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
December 2014, Human immunology,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
August 2006, Molecular and cellular biology,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
October 2009, Biological & pharmaceutical bulletin,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
January 2015, PloS one,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
February 2007, Kidney international,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
October 2019, The Journal of allergy and clinical immunology,
C C Chini, and M D Boos, and C J Dick, and R A Schoon, and P J Leibson
July 2003, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!