Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. 2000

F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France.

The nature of isoprenoids synthesized in plants is primarily determined by the specificity of prenyltransferases. Several of these enzymes have been characterized at the molecular level. The compartmentation and molecular regulation of geranyl diphosphate (GPP), the carbon skeleton that is the backbone of myriad monoterpene constituents involved in plant defence, allelopathic interactions and pollination, is poorly understood. We describe here the cloning and functional expression of a GPP synthase (GPPS) from Arabidopsis thaliana. Immunohistological analyses of diverse non-secretory and secretory plant tissues reveal that GPPS and its congeners, monoterpene synthase, deoxy-xylulose phosphate synthase and geranylgeranyl diphosphate synthase, are equally compartmentalized and distributed in non-green plastids as well in chloroplasts of photosynthetic cells. This argues that monoterpene synthesis is not solely restricted to specialized secretory structures but can also occur in photosynthetic parenchyma. These data provide new information as to how monoterpene biosynthesis is compartmentalized and induced de novo in response to biotic and abiotic stress in diverse plants.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004122 Dimethylallyltranstransferase An enzyme that, in the pathway of cholesterol biosynthesis, catalyzes the condensation of isopentenyl pyrophosphate and dimethylallylpyrophosphate to yield pyrophosphate and geranylpyrophosphate. The enzyme then catalyzes the condensation of the latter compound with another molecule of isopentenyl pyrophosphate to yield pyrophosphate and farnesylpyrophosphate. EC 2.5.1.1. Dimethylallyltransferase,Geranylpyrophosphate Synthetase,Prenyltransferase,Dolichyl Phosphate Synthetase,Geranylgeranyl Pyrophosphate Synthetase,Nerylpyrophosphate Synthetase,Synthetase, Geranylpyrophosphate,Synthetase, Nerylpyrophosphate
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013729 Terpenes A class of compounds composed of repeating 5-carbon units of HEMITERPENES. Isoprenoid,Terpene,Terpenoid,Isoprenoids,Terpenoids
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
September 2015, Molecular plant,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
June 2009, Proceedings of the National Academy of Sciences of the United States of America,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
May 2014, ACS synthetic biology,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
May 2016, Applied microbiology and biotechnology,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
December 1981, Planta,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
January 2017, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
December 2007, Archives of biochemistry and biophysics,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
May 2023, The Plant cell,
F Bouvier, and C Suire, and A d'Harlingue, and R A Backhaus, and B Camara
February 2017, The New phytologist,
Copied contents to your clipboard!