The effects of glucosamine derivatives on equine articular cartilage degradation in explant culture. 2000

J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA.

OBJECTIVE To determine whether glucosamine-3-sulfate, glucose-3-sulfate (control) and N-acetyl glucosamine inhibit experimentally induced degradation of equine articular cartilage explants similar to glucosamine HCl. METHODS Articular cartilage was obtained from the antebrachio-carpal and middle joints of horses (2-8 years old) killed for reasons unrelated to lameness. Cartilage discs were harvested from the weight-bearing region of the articular surface and cultured. Media were exchanged daily and the recovered media stored at 4 degrees C. On days 1 and 2 lipopolysaccharide (LPS, 10 microg/ml) was added to induce cartilage degradation. To evaluate the effects of different sources of glucosamine (on an equal molar basis), varying concentrations of glucosamine HCl (0.25, 2.5, or 25 mg/ml), glucosamine-3-sulfate (0.304, 3.04, or 30.4 mg/ml), or N-acetyl-glucosamine (0.256, 2.56, or 25.6 mg/ml) were added to the cultures. The glucose-3-sulfate control was added at 0.3075, 3.075 or 30.75 mg/ml. Nitric oxide and proteoglycan released into conditioned media and tissue proteoglycan synthesis and total tissue PG content were measured as indicators of cartilage metabolism. RESULTS Glucosamine-3-sulfate consistently inhibited cartilage degradation in a manner similar to glucosamine HCl, while the effects of N-acetyl-glucosamine were highly variable and did not inhibit cartilage degradation. Glucose-3-sulfate did not inhibit cartilage degradation. CONCLUSIONS Our results indicate that glucosamine sulfate also has the potential to prevent or reduce articular cartilage degradation similar to glucosamine HCl in vitro. The amine group at the carbon-2 position appears important for the effectiveness of the glucosamine derivative. The therapeutic value of N-acetyl-glucosamine remains questionable.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002358 Cartilage, Articular A protective layer of firm, flexible cartilage over the articulating ends of bones. It provides a smooth surface for joint movement, protecting the ends of long bones from wear at points of contact. Articular Cartilage,Articular Cartilages,Cartilages, Articular
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000117 Acetylglucosamine The N-acetyl derivative of glucosamine. Acetyl Glucosamine,N-Acetyl Glucosamine,N-Acetyl-beta-D-Glucosamine,N-Acetylglucosamine,beta-N-Acetylglucosamine,2-Acetamido-2-Deoxy-D-Glucose,2-Acetamido-2-Deoxyglucose,N-Acetyl-D-Glucosamine,2 Acetamido 2 Deoxy D Glucose,2 Acetamido 2 Deoxyglucose,Glucosamine, Acetyl,Glucosamine, N-Acetyl,N Acetyl D Glucosamine,N Acetyl Glucosamine,N Acetyl beta D Glucosamine,N Acetylglucosamine,beta N Acetylglucosamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
October 1991, American journal of veterinary research,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
July 1993, American journal of veterinary research,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
March 2000, Equine veterinary journal,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
April 1994, Matrix biology : journal of the International Society for Matrix Biology,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
January 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
October 2004, American journal of veterinary research,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
August 2003, Osteoarthritis and cartilage,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
July 1997, Journal of biochemistry,
J I Fenton, and K A Chlebek-Brown, and T L Peters, and J P Caron, and M W Orth
March 1996, Osteoarthritis and cartilage,
Copied contents to your clipboard!