Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. 2000

E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
Department of Physiology and Biophysics, University at Buffalo School of Medicine, Buffalo, New York 14214, USA. ekoenig@acsu.buffalo.edu

A growing body of metabolic and molecular evidence of an endogenous protein-synthesizing machinery in the mature axon is a challenge to the prevailing dogma that the latter is dependent exclusively on slow axoplasmic transport to maintain protein mass in a steady state. However, evidence for a systematic occurrence of ribosomes in mature vertebrate axons has been lacking until recently, when restricted ribosomal domains, called "periaxoplasmic plaques," were described in goldfish CNS myelinated axons. Comparable restricted RNA/ribosomal "plaque" domains now have been identified in myelinated axons of lumbar spinal nerve roots in rabbit and rat on the basis of RNase sensitivity of YOYO-1-binding fluorescence, immunofluorescence of ribosome-specific antibodies, and ribosome phosphorus mapping by electron spectroscopic imaging (ESI). The findings were derived from examination of the axoplasm isolated from myelinated fibers as axoplasmic whole mounts and delipidated spinal nerve roots. Ribosomal periaxoplasmic plaque domains in rabbit axons were typically narrow ( approximately 2 microm), elongated ( approximately 10 microm) sites that frequently were marked by a protruding structure. The domain complexity included an apparent ribosome-binding matrix. The small size, random distribution, and variable intermittent axial spacing of plaques around the periphery of axoplasm near the axon-myelin border are likely reasons why their systematic occurrence has remained undetected in ensheathed axons. The periodic but regular incidence of ribosomal domains provides a structural basis for previous metabolic evidence of protein synthesis in myelinated axons.

UI MeSH Term Description Entries
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011806 Quinolinium Compounds Compounds, Quinolinium
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D004577 Electron Probe Microanalysis Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode. Microscopy, Electron, X-Ray Microanalysis,Spectrometry, X-Ray Emission, Electron Microscopic,Spectrometry, X-Ray Emission, Electron Probe,X-Ray Emission Spectrometry, Electron Microscopic,X-Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis, Electron Microscopic,X-Ray Microanalysis, Electron Probe,Microanalysis, Electron Probe,Spectrometry, X Ray Emission, Electron Microscopic,Spectrometry, X Ray Emission, Electron Probe,X Ray Emission Spectrometry, Electron Microscopic,X Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis,Electron Probe Microanalyses,Microanalyses, Electron Probe,Microanalysis, X-Ray,Probe Microanalyses, Electron,Probe Microanalysis, Electron,X Ray Microanalysis,X Ray Microanalysis, Electron Microscopic,X Ray Microanalysis, Electron Probe
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
August 2007, Journal of neuroscience research,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
November 2008, Glia,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
January 2019, Advances in experimental medicine and biology,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
October 2003, Neuron,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
October 2000, Current opinion in neurobiology,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
August 2004, Journal of neurobiology,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
December 1950, Journal of cellular and comparative physiology,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
January 2020, Cell,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
May 2013, Journal of neuroscience research,
E Koenig, and R Martin, and M Titmus, and J R Sotelo-Silveira
May 1985, Neuroscience,
Copied contents to your clipboard!