The Wilms' tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. 2001

X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
Section on Growth Factors and Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Recently, we characterized the rat epidermal growth factor receptor (EGFR) promoter and demonstrated that TCC repeat sequences are required for the down-regulation of EGFR by nerve growth factor (NGF) in PC12 cells. In this study, we report that the Wilms' tumor gene product WT1, a zinc finger transcription factor, is able to enhance the activity of the rat EGFR promoter in cotransfection assays. Gel mobility shift assays demonstrate that WT1 binds to the TCC repeat sequences of the rat EGFR promoter. Overexpression of WT1 resulted in up-regulation of the expression levels of endogenous EGFR in PC12 cells. Interestingly, NGF down-regulated the expression levels of WT1 and EGFR in PC12 cells, but not in the p140(trk)-deficient variant PC12nnr5 cells or in cells expressing either dominant-negative Ras or dominant-negative Src. Most importantly, we evaluated the inhibitory effect of antisense WT1 RNA on EGFR expression, and we found that antisense WT1 RNA could substantially reduce EGFR repression in either histochemical staining study or immunoblot analysis. These results indicate that NGF-induced down-regulation of the EGFR in PC12 cells is mediated through WT1 and that WT1 may play an important role in the differentiation of nerve cells.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic

Related Publications

X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
June 1987, The Journal of cell biology,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
June 2012, Molecular reproduction and development,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
March 1998, The Journal of biological chemistry,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
November 2014, Journal of molecular neuroscience : MN,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
January 1996, Journal of molecular neuroscience : MN,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
May 1994, Molecular endocrinology (Baltimore, Md.),
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
April 1997, The Journal of biological chemistry,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
July 1995, Journal of neurochemistry,
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
September 1991, Science (New York, N.Y.),
X W Liu, and L J Gong, and L Y Guo, and Y Katagiri, and H Jiang, and Z Y Wang, and A C Johnson, and G Guroff
November 1992, The Journal of biological chemistry,
Copied contents to your clipboard!