Inactivation of adenosine 5'-triphosphate synthesis and reduced-form nicotinamide adenine dinucleotide dehydrogenase activity in Escherichia coli by near-ultraviolet and violet radiations. 1976

B D Lakchaura, and T Fossum, and J Jagger

Near-ultraviolet (near-UV) light (300 to 380 nm) is a significant component of sunlight and has a variety of effects on biological systems. The present work is an attempt to identify chromophores (molecular absorbers of light) and targets (critical damaged molecules) for inhibition of adenosine triphosphate (ATP) synthesis in Escherichia coli by near UV. The fluence of 334 nm required for 37% survival of net ATP synthesis (F37) in E. coli AB2463 in succinate medium is 140 kJ/m2. The action spectrum for this inactivation is almost structureless, exhibiting a smooth transition from high efficiency at 313 nm to low efficiency at 405 nm. The action spectrum for inhibition of net ATP synthesis is consistent with the chromophore being either ubiquinone Q-8 or vitamin K2. The fluence required is consistent with ubiquinone Q-8 also being a target molecule. The activity of reduced nicotinamide adenine dinucleotide dehydrogenase in extracts of E. coli B is also inactivated by near UV and shows an F37 of about 40 kJ/m2. The action spectrum for this effect is quite structureless; it shows high efficiency at 313 nm and low efficiency at 435 nm. The data do not suggest a target molecule for this action, although it is possible that ubiquinone Q-8 absorbs the near-UV energy and then passes it on to some other target molecule. The data further indicate that inactivation of the oxidative phosphorylation system is not a primary factor in near-UV-induced growth delay in E. coli.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013386 Succinates Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure. Succinic Acids,Acids, Succinic
D014451 Ubiquinone A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals. Coenzyme Q

Related Publications

B D Lakchaura, and T Fossum, and J Jagger
December 1962, The Biochemical journal,
B D Lakchaura, and T Fossum, and J Jagger
December 1976, Biochimica et biophysica acta,
B D Lakchaura, and T Fossum, and J Jagger
August 1964, The Journal of biological chemistry,
B D Lakchaura, and T Fossum, and J Jagger
March 1969, Journal of bacteriology,
B D Lakchaura, and T Fossum, and J Jagger
September 1966, Journal of bacteriology,
B D Lakchaura, and T Fossum, and J Jagger
September 1969, Journal of bacteriology,
B D Lakchaura, and T Fossum, and J Jagger
December 1966, The Biochemical journal,
Copied contents to your clipboard!