Physical properties of L-asparaginase from Serratia marcescens. 1976

M L Stern, and A W Phillips, and A J Gottlieb

Purified L-asparaginase from Serratia marcescens had an apparent-weight average molecular weight of 171,000 to 180,000 as determined by electrophoresis on polyacrylamide gels and by sedimentation equilibrium at low speed in an analytical ultracentrifuge. A subunit molecular weight of 31,500 +/- 1,500 was estimated for the enzyme after treatment with sodium dodecyl sulfate and urea and electrophoresis on polyacrylamide gels; a similar value was obtained by high-speed sedimentation equilibrium in the presence of guanidine hydrochloride. Our data indicate that the Serratia enzyme could have five or six subunits of 32,000 daltons, compared to four subunits of 32,000 daltons in the Escherichia coli enzyme. The Serratia L-asparaginase also appears to be a larger molecule than the enzyme from Erwinia carotovora, Proteus vulgaris, Acinetobacter glutaminasificans, and Alcaligenes eutrophus. The Serratia enzyme, like that from E. caratovora, was more resistant than the E. coli enzyme to dissociation by sodium dodecyl sulfate. This resistance could be due to the finding that the Serratia enzyme had a relatively high hydrophobicity, similar to the enzyme from E. caratovora, when compared with the hydrophobicity of the E. coli enzyme. The isoelectric point of the Serratia enzyme was approximately 5.2. The influence of certain physical characteristics of the enzyme on the biological properties is discussed.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001215 Asparaginase A hydrolase enzyme that converts L-asparagine and water to L-aspartate and NH3. EC 3.5.1.1. Asparaginase II,Asparaginase medac,Asparagine Deaminase,Colaspase,Crasnitin,Elspar,Erwinase,Kidrolase,Leunase,Paronal,Deaminase, Asparagine,medac, Asparaginase
D012706 Serratia marcescens A species of gram-negative, facultatively anaerobic, rod-shaped bacteria found in soil, water, food, and clinical specimens. It is a prominent opportunistic pathogen for hospitalized patients.
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

M L Stern, and A W Phillips, and A J Gottlieb
May 1971, Journal of bacteriology,
M L Stern, and A W Phillips, and A J Gottlieb
September 1974, Biochimica et biophysica acta,
M L Stern, and A W Phillips, and A J Gottlieb
November 1970, Biochemical and biophysical research communications,
M L Stern, and A W Phillips, and A J Gottlieb
February 1974, Journal of bacteriology,
M L Stern, and A W Phillips, and A J Gottlieb
June 1971, Journal of the National Cancer Institute,
M L Stern, and A W Phillips, and A J Gottlieb
February 1977, Indian journal of experimental biology,
M L Stern, and A W Phillips, and A J Gottlieb
July 1967, Biochemical and biophysical research communications,
M L Stern, and A W Phillips, and A J Gottlieb
October 1969, Applied microbiology,
M L Stern, and A W Phillips, and A J Gottlieb
April 2011, Letters in applied microbiology,
M L Stern, and A W Phillips, and A J Gottlieb
October 1975, Journal of bacteriology,
Copied contents to your clipboard!