Catalytic inhibition of DNA topoisomerase II by N-benzyladriamycin (AD 288). 2000

L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
Department of Pharmacology, University of Tennessee Health Science Center, 38163, USA, Memphis, TN, USA. llothstein@utmem.edu

N-Benzyladriamycin (AD 288) is a highly lipophilic, semi-synthetic congener of doxorubicin (DOX). Unlike DOX, which stimulates double-stranded DNA scission by stabilizing topoisomerase II/DNA cleavable complexes, AD 288 is a catalytic inhibitor of topoisomerase II, capable of preventing topoisomerase II activity on DNA. The concentration of AD 288 required to inhibit the topoisomerase II-catalyzed decatenation of linked networks of kinetoplast DNA was comparable to that for DOX. However, AD 288 did not stabilize cleavable complex formation or stimulate topoisomerase II-mediated DNA cleavage. In addition, AD 288 inhibited the formation of cleavable complexes by etoposide in a concentration-dependent manner. Human CCRF-CEM cells and murine J774. 2 cells exhibiting resistance against DOX, teniposide, or 3'-hydroxy-3'-deaminodoxorubicin through reduced topoisomerase II activity remained sensitive to AD 288. These studies suggest that AD 288 inhibits topoisomerase II activity by preventing the initial non-covalent binding of topoisomerase II to DNA. Since AD 288 is a potent DNA intercalator, catalytic inhibition is achieved by prohibiting access of the enzyme to DNA binding sites. These results also demonstrate that specific substitutions on the aminosugar of DOX can alter the mechanism of topoisomerase II inhibition.

UI MeSH Term Description Entries
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
October 1998, Biochimica et biophysica acta,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
June 1991, BioEssays : news and reviews in molecular, cellular and developmental biology,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
April 2001, Toxicology letters,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
March 2006, Journal of agricultural and food chemistry,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
December 2018, ChemMedChem,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
October 1988, Molecular pharmacology,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
June 2011, Journal of inorganic biochemistry,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
August 1999, Biochemical pharmacology,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
May 2003, Biochemical and biophysical research communications,
L Lothstein, and D P Suttle, and J B Roaten, and Y Koseki, and M Israel, and T W Sweatman
May 1992, Biochimica et biophysica acta,
Copied contents to your clipboard!