Evidence of an estrogen receptor form devoid of estrogen binding ability in MCF-7 cells. 2000

A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
Laboratoire J.-C. Heuson de Cancérologie Mammaire, Institut Jules Bordet-Service de Médecine, Rue Héger-Bordet, 1-1000, Brussels, Belgium.

In MCF-7 breast cancer cells, hydroxytamoxifen (OH-Tam) up-regulates the estrogen receptor (ER) in a form unable to bind [(3)H]estradiol (E(2)). We show here that this property is not restricted to this antiestrogen. [(3)H]E(2) binding assays (whole cell assays, DCC assays on cell extracts) and enzyme immunoassays (Abbott) performed in parallel, establish the permanent presence of such unusual ERs in the absence of any exposure of the cells to a ligand. E(2) and the pure antiestrogen RU 58 668, which down-regulate ER, also decrease [(3)H]E(2) binding. In control cells, these ERs represent about the half of the whole receptor population; they also display a tendency to stabilize within the cell nucleus. Loss of E(2) binding ability appears irreversible, since we failed to label receptor accumulated under OH-Tam with [(3)H]E(2) or [(3)H]tamoxifen aziridine (TAZ). Cycloheximide (CHX), which blocks E(2)-induced down regulation of ER, failed to stabilize [(3)H]E(2) binding (whole cell assay) after an [(3)H]E(2) pulse (1 h), confirming that regulation of E(2) binding and peptide level are related to different regulatory mechanisms. Loss of binding ability could not be ascribed to any ER cleavage as demonstrated by Western blotting with a panel of ER antibodies raised against its various domains (67 kDa ER solely detected). We propose that loss of E(2) binding ability is related to the aging process of the receptor, i.e. it is progressively converted to a form devoted to degradation after it has accomplished its physiological role. Ligands may favor (E(2), RU 58 668) or impede (OH-Tam) this elimination process.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen

Related Publications

A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
March 1992, The Journal of steroid biochemistry and molecular biology,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
August 2009, Journal of molecular endocrinology,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
June 2019, Journal of biotechnology,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
November 1989, Molecular endocrinology (Baltimore, Md.),
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
March 2006, Molecular cancer therapeutics,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
June 1987, Journal of steroid biochemistry,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
December 1988, Molecular endocrinology (Baltimore, Md.),
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
October 1984, Carcinogenesis,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
November 1983, Journal of steroid biochemistry,
A El Khissiin, and F Journé, and I Laïos, and H S Seo, and G Leclercq
July 2002, The Journal of biological chemistry,
Copied contents to your clipboard!