Immunocytochemical localization of ionotropic glutamate receptors subunits in the adult quail forebrain. 2000

C Cornil, and A Foidart, and A Minet, and J Balthazart
Research Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, Liège, B-4020 Belgium.

The excitatory amino acid glutamate is implicated in the central control of many neuroendocrine and behavioral processes. The ionotropic glutamate receptors are usually divided into the N-methyl-D-aspartate (NMDA) and non-NMDA (kainate and AMPA) subtypes. Subunits of these receptors have been cloned in a few mammalian species. Information available in birds is more limited. In quail, we recently demonstrated that glutamate agonists (kainate, AMPA, and NMDA) rapidly (within minutes) and reversibly decrease in vitro aromatase activity like several other manipulations affecting intracellular HCa(2+) pools. Aromatase catalyzes the conversion of androgens into estrogens which is a limiting step in the control by testosterone of many behavioral and physiologic processes. Therefore, glutamate could control estrogen production in the brain, but the anatomic substrate supporting this effect is poorly understood. In quail, aromatase is mainly localized in the preoptic-hypothalamic-limbic system. We visualized here the distribution of the major ionotropic glutamate receptors in quail by immunocytochemical methods by using commercial primary antibodies raised against rat glutamate receptor 1 and receptors 2-3 (GluR1, GluR2/3: AMPA subtype, Chemicon, CA), rat glutamate receptors 5-7 (GluR5-7: kainate subtype, Pharmingen, CA), and rat NMDA receptors (NMDAR1, Pharmingen, CA). Dense and specific signals were obtained with all antibodies. The four types of receptors are broadly distributed in the brain, and, in particular, immunoreactive cells are identified within the major aromatase cell groups located in the medial preoptic nucleus, ventromedial hypothalamus, nucleus striae terminalis, and nucleus taeniae. Dense specific populations of glutamate receptor-immunoreactive cells are also present with a receptor subtype-specific distribution in broad areas of the telencephalon. The distribution of glutamate receptors, therefore, is consistent with the idea that these receptors could be located at the surface of aromatase-containing cells and mediate the rapid regulation of aromatase activity in a direct manner.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001141 Aromatase An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system. CYP19,Cytochrome P-450 CYP19,Cytochrome P-450(AROM),Androstenedione Aromatase,CYP 19,CYP19 Protein,Cytochrome P450 19,Estrogen Synthase,Estrogen Synthetase,P450AROM,Aromatase, Androstenedione,Cytochrome P 450 CYP19,Protein, CYP19
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018091 Receptors, AMPA A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). AMPA Receptors,Quisqualate Receptors,AMPA Receptor,Quisqualate Receptor,Receptor, AMPA,Receptor, Quisqualate,Receptors, Quisqualate

Related Publications

C Cornil, and A Foidart, and A Minet, and J Balthazart
April 2013, Seikagaku. The Journal of Japanese Biochemical Society,
C Cornil, and A Foidart, and A Minet, and J Balthazart
February 2010, Physiology (Bethesda, Md.),
C Cornil, and A Foidart, and A Minet, and J Balthazart
October 1996, Journal of chemical neuroanatomy,
C Cornil, and A Foidart, and A Minet, and J Balthazart
October 2000, Cellular and molecular life sciences : CMLS,
C Cornil, and A Foidart, and A Minet, and J Balthazart
August 1999, Current opinion in chemical biology,
C Cornil, and A Foidart, and A Minet, and J Balthazart
January 2000, Neuroscience,
C Cornil, and A Foidart, and A Minet, and J Balthazart
February 2017, Bosnian journal of basic medical sciences,
C Cornil, and A Foidart, and A Minet, and J Balthazart
February 2002, Drug discovery today,
C Cornil, and A Foidart, and A Minet, and J Balthazart
February 1995, Brain research,
Copied contents to your clipboard!