Synthetic oligonucleotides as RNA mimetics: 2'-modified Rnas and N3'-->P5' phosphoramidates. 2000

M Egli, and S M Gryaznov
Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA.

Significant interest in synthetic DNA and RNA oligonucleotides and their analogues has marked the past two decades of research in chemistry and biochemistry. This attention was largely determined by the great potential of these compounds for various therapeutic applications such as antisense, antigene and ribozyme-based agents. Modified oligonucleotides have also become powerful molecular biological and biochemical research tools that allow fast and efficient regulation of gene expression and gene functions in vitro and in vivo. These applications in turn are based on the ability of the oligonucleotides to form highly sequence-specific complexes with nucleic acid targets of interest. This review summarizes recent advances in the design, synthesis, biochemical and structural properties of various RNA analogues. These comprise 3'-modified oligonucleotide N3'-->P5' phosphoramidates, analogues with modifications at the 2'-position of nucleoside sugar rings, or combinations of the two. Among the properties of the RNA minetics reviewed here are the thermal stability of their duplexes and triplexes, hydrolytic resistance to cellular nucleases and biological activity in in vitro and in vivo systems. In addition, key structural aspects of the complexes formed by the RNA analogues, including interaction with water molecules and ions, are analyzed and presented.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D018716 Molecular Mimicry The structure of one molecule that imitates or simulates the structure of a different molecule. Antigenic Mimicry,DNA Mimicry,Mimicry, Molecular,Antigen Mimicry,Antigen Mimicries,Antigenic Mimicries,DNA Mimicries,Mimicries, Antigen,Mimicries, Antigenic,Mimicries, DNA,Mimicries, Molecular,Mimicry, Antigen,Mimicry, Antigenic,Mimicry, DNA,Molecular Mimicries

Related Publications

M Egli, and S M Gryaznov
September 1998, Nucleic acids research,
M Egli, and S M Gryaznov
June 1995, Proceedings of the National Academy of Sciences of the United States of America,
M Egli, and S M Gryaznov
April 1996, Nucleic acids research,
M Egli, and S M Gryaznov
December 1999, Biochimica et biophysica acta,
M Egli, and S M Gryaznov
October 1999, Nucleic acids research,
M Egli, and S M Gryaznov
July 1995, Nucleic acids research,
M Egli, and S M Gryaznov
August 1996, Nucleic acids research,
M Egli, and S M Gryaznov
January 1998, Nucleic acids research,
Copied contents to your clipboard!