Transposition of Tn7 in Pseudomonas aeruginosa and isolation of alk::Tn7 mutations. 1979

M A Fennewald, and J A Shapiro

Conjugal crosses with Pseudomonas aeruginosa donors carrying the CAM-OCT and RP4::Tn7 plasmids result in transfer of the Tn7 trimethoprim resistance (Tp(r)) determinant independently of RP4 markers. All Tp(r) exconjugants which lack RP4 markers have CAM-OCT genes and therefore must have received CAM-OCT::Tn7 plasmids formed by transposition of Tn7 from RP4::Tn7 to CAM-OCT. Most crosses yield exconjugants carrying mutant CAM-OCT plasmids which no longer determine either camphor or alkane utilization and thus appear to carry Tn7 inserts in the cam or alk loci, respectively. Transduction and reversion experiments indicated that at least 13 alkane-negative, camphor-positive, Tp(r) CAM-OCT::Tn7 plasmids carry an alk::Tn7 mutation. Determination of linkage between the alk mutation and the Tp(r) determinant of Tn7 on these plasmids is complicated by the presence of multiple copies of the Tn7 element in the genome. Generalized transduction will remove Tn7 from a CAM-OCT alk::Tn7 plasmid to yield alk(+) cells which carry no Tp(r) determinant on the CAM-OCT plasmid (as shown by transfer of the plasmid to a second strain). But the transduction to alk(+) does not remove all Tp(r) determinants from the genome of the recipient cell because the alkane-positive transductants remain trimethoprim resistant. Thus, it appears that copies of Tn7 can accumulate in the genome of P. aeruginosa (CAM-OCT alk::Tn7) strains without leaving their original site. This result is consistent with transposition models that involve replication of the transposable element without excision from the original site.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000473 Alkanes The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkane
D013307 Streptomycin An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis. Estreptomicina CEPA,Estreptomicina Clariana,Estreptomicina Normon,Strepto-Fatol,Strepto-Hefa,Streptomycin GrĂ¼nenthal,Streptomycin Sulfate,Streptomycin Sulfate (2:3) Salt,Streptomycin Sulphate,Streptomycine Panpharma,Strepto Fatol,Strepto Hefa
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic
D014295 Trimethoprim A pyrimidine inhibitor of dihydrofolate reductase, it is an antibacterial related to PYRIMETHAMINE. It is potentiated by SULFONAMIDES and the TRIMETHOPRIM, SULFAMETHOXAZOLE DRUG COMBINATION is the form most often used. It is sometimes used alone as an antimalarial. TRIMETHOPRIM RESISTANCE has been reported. Proloprim,Trimpex

Related Publications

M A Fennewald, and J A Shapiro
January 1982, Molecular & general genetics : MGG,
M A Fennewald, and J A Shapiro
February 1988, Genes & development,
M A Fennewald, and J A Shapiro
December 1986, Molecular & general genetics : MGG,
M A Fennewald, and J A Shapiro
January 1984, Molecular & general genetics : MGG,
M A Fennewald, and J A Shapiro
January 1985, Molecular & general genetics : MGG,
M A Fennewald, and J A Shapiro
January 2006, Nature protocols,
M A Fennewald, and J A Shapiro
May 1989, Journal of molecular biology,
M A Fennewald, and J A Shapiro
March 1976, Journal of bacteriology,
M A Fennewald, and J A Shapiro
November 1997, The EMBO journal,
Copied contents to your clipboard!