Regulation of the epithelial Na(+) channel by extracellular acidification. 2000

M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
Departments of Medicine and of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA. mawayda@tulane.edu

The effect of extracellular acidification was tested on the native epithelial Na(+) channel (ENaC) in A6 epithelia and on the cloned ENaC expressed in Xenopus oocytes. Channel activity was determined utilizing blocker-induced fluctuation analysis in A6 epithelia and dual electrode voltage clamp in oocytes. In A6 cells, a decrease of extracellular pH (pH(o)) from 7.4 to 6.4 caused a slow stimulation of the amiloride-sensitive short-circuit current (I(Na)) by 68.4 +/- 11% (n = 9) at 60 min. This increase of I(Na) was attributed to an increase of open channel and total channel (N(T)) densities. Similar changes were observed with pH(o) 5.4. The effects of pH(o) were blocked by buffering intracellular Ca(2+) with 5 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In oocytes, pH(o) 6.4 elicited a small transient increase of the slope conductance of the cloned ENaC (11.4 +/- 2.2% at 2 min) followed by a decrease to 83.7 +/- 11.7% of control at 60 min (n = 6). Thus small decreases of pH(o) stimulate the native ENaC by increasing N(T) but do not appreciably affect ENaC expressed in Xenopus oocytes. These effects are distinct from those observed with decreasing intracellular pH with permeant buffers that are known to inhibit ENaC.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
May 2012, Experimental cell research,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
February 2018, Annual review of physiology,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
August 1999, The American journal of physiology,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
January 2007, Current topics in developmental biology,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
October 2003, The Journal of biological chemistry,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
August 1998, The Journal of general physiology,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
September 2017, The Journal of biological chemistry,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
May 2006, American journal of physiology. Renal physiology,
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
February 2016, Hepatology (Baltimore, Md.),
M S Awayda, and M J Boudreaux, and R L Reger, and L L Hamm
October 2009, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!