A proteome analysis of the cadmium response in Saccharomyces cerevisiae. 2001

K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
Service de Biochimie et Génétique Moléculaire, Bât 142, CEA-Saclay, F-91191, Gif-sur-Yvette Cedex, France.

Cadmium is very toxic at low concentrations, but the basis for its toxicity is not clearly understood. We analyzed the proteomic response of yeast cells to acute cadmium stress and identified 54 induced and 43 repressed proteins. A striking result is the strong induction of 9 enzymes of the sulfur amino acid biosynthetic pathway. Accordingly, we observed that glutathione synthesis is strongly increased in response to cadmium treatment. Several proteins with antioxidant properties were also induced. The induction of nine proteins is dependent upon the transactivator Yap1p, consistent with the cadmium hypersensitive phenotype of the YAP1-disrupted strain. Most of these proteins are also overexpressed in a strain overexpressing Yap1p, a result that correlates with the cadmium hyper-resistant phenotype of this strain. Two of these Yap1p-dependent proteins, thioredoxin and thioredoxin reductase, play an important role in cadmium tolerance because strains lacking the corresponding genes are hypersensitive to this metal. Altogether, our data indicate that the two cellular thiol redox systems, glutathione and thioredoxin, are essential for cellular defense against cadmium.

UI MeSH Term Description Entries
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013880 Thioredoxin-Disulfide Reductase A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5 Thioredoxin Reductase (NADPH),NADP-Thioredoxin Reductase,NADPH-Thioredoxin Reductase,Thioredoxin Reductase,NADP Thioredoxin Reductase,NADPH Thioredoxin Reductase,Reductase, NADP-Thioredoxin,Reductase, NADPH-Thioredoxin,Reductase, Thioredoxin,Reductase, Thioredoxin-Disulfide,Thioredoxin Disulfide Reductase
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D054481 Thioredoxin Reductase 1 A subtype of thioredoxin reductase found primarily in the CYTOSOL. Reductase 1, Thioredoxin
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D020543 Proteome The protein complement of an organism coded for by its genome. Proteomes

Related Publications

K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
August 1997, Electrophoresis,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
January 2006, Genome biology,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
September 2013, Journal of proteome research,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
August 2007, The FEBS journal,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
August 2021, FEMS microbiology letters,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
March 2003, Yeast (Chichester, England),
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
November 2003, Proceedings of the National Academy of Sciences of the United States of America,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
September 2006, Journal of proteome research,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
January 2006, Journal of basic microbiology,
K Vido, and D Spector, and G Lagniel, and S Lopez, and M B Toledano, and J Labarre
November 1998, Molecular microbiology,
Copied contents to your clipboard!