Coupling of energy to folate transport in Lactobacillus casei. 1979

G B Henderson, and E M Zevely, and F M Huennekens

Lactobacillus casei cells can accumulate folate to an intracellular concentration in excess of 500 muM and to concentration gradients (relative to the extracellular compartment) of several thousand-fold. Maximum rates of folate transport are achieved rapidly (t(1/2) < 1 min) after the addition of glucose to energy-depleted cells and occur at intracellular adenosine 5'-triphosphate concentrations above 625 muM. The rate of folate transport and the adenosine 5'-triphosphate content of cells are both extremely sensitive to arsenate and decrease in parallel with increasing concentrations of the inhibitor, indicating a requirement for phosphate-bond energy in the transport process. The energy source is not a membrane potential or a pH gradient generated via the membrane-bound adenosine triphosphatase, since dicyclohexylcarbodiimide (an adenosine triphosphatase inhibitor) and carbonyl cyanide m-chlorophenylhydrazone (a proton conductor) have little effect on the uptake process. The K(+)-ionophore, valinomycin, is an inhibitor of folate transport, but does not act via a mechanism involving dissipation of the membrane potential. This can be deduced from the facts that the inhibition by valinomycin is relatively insensitive to pH, is considerably greater in Na(+)- than in K(+)-containing buffers, and is not enhanced by the addition of proton conductors. Folate efflux is not affected by valinomycin, glucose, or various metabolic inhibitors, although a rapid release of the accumulated vitamin can be achieved by the addition of unlabeled folate together with an energy source (glucose). These results suggest that the active transport of folate into L. casei is energized by adenosine 5'-triphosphate or an equivalent energy-rich compound, and that coupling occurs not via the membrane-bound adenosine triphosphatase but by direct interaction of the energy source with a component of the transport system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007780 Lacticaseibacillus casei A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina. L. casei is CATALASE positive. Lactobacillus casei
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D004024 Dicyclohexylcarbodiimide A carbodiimide that is used as a chemical intermediate and coupling agent in peptide synthesis. (From Hawley's Condensed Chemical Dictionary, 12th ed) DCCD
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001149 Arsenates Inorganic or organic salts and esters of arsenic acid.
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D014634 Valinomycin A cyclododecadepsipeptide ionophore antibiotic produced by Streptomyces fulvissimus and related to the enniatins. It is composed of 3 moles each of L-valine, D-alpha-hydroxyisovaleric acid, D-valine, and L-lactic acid linked alternately to form a 36-membered ring. (From Merck Index, 11th ed) Valinomycin is a potassium selective ionophore and is commonly used as a tool in biochemical studies.

Related Publications

G B Henderson, and E M Zevely, and F M Huennekens
October 1974, Archives of biochemistry and biophysics,
G B Henderson, and E M Zevely, and F M Huennekens
June 1982, Journal of bacteriology,
G B Henderson, and E M Zevely, and F M Huennekens
September 1967, British medical journal,
G B Henderson, and E M Zevely, and F M Huennekens
February 1974, The Journal of biological chemistry,
G B Henderson, and E M Zevely, and F M Huennekens
September 1985, Journal of bacteriology,
G B Henderson, and E M Zevely, and F M Huennekens
June 1982, Archives of biochemistry and biophysics,
G B Henderson, and E M Zevely, and F M Huennekens
March 1982, The British journal of nutrition,
G B Henderson, and E M Zevely, and F M Huennekens
December 1977, Journal of general microbiology,
G B Henderson, and E M Zevely, and F M Huennekens
March 1983, The British journal of nutrition,
G B Henderson, and E M Zevely, and F M Huennekens
September 1966, American journal of clinical pathology,
Copied contents to your clipboard!