Oscillations in oxygen tension and insulin release of individual pancreatic ob/ob mouse islets. 2000

H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
Department of Medical Cell Biology, Uppsala University, Sweden.

OBJECTIVE The role of beta-cell metabolism for generation of oscillatory insulin release was investigated by simultaneous measurements of oxygen tension (pO2) and insulin release from individual islets of Langerhans. METHODS Individual islets isolated from the ob/ob-mice were perifused. Insulin in the perifusate was measured with a sensitive ELISA and PO2 with a modified Clark-type electrode inserted into the islets. RESULTS In the presence of 3 mmol/l D-glucose, PO2 was 102 +/- 9 mmHg and oscillatory (0.26 +/- 0.04 oscillations/min). Corresponding insulin measurements showed oscillatory release with similar periodicity (0.25 +/- 0.02 oscillations/min). When the D-glucose concentration was increased to 11 mmol/l, PO2 decreased by 30% to 72 +/- 10 mmHg with maintained frequency of the oscillations. Corresponding insulin secretory rate rose from 5 +/- 2 to 131 +/- 16 pmol x g(-1) x s(-1) leaving the frequency of the insulin pulses unaffected. The magnitude of glucose-induced change in pO2 varied between islets but was positively correlated to the amount of insulin released (r2 = 0.85). When 1 mmol/l tolbutamide was added to the perifusion medium containing 11 mmol/l glucose no change in average oscillatory pO2 was observed despite a doubling in the secretory rate. When 8 mmol/l 3-oxymethyl glucose was added to perifusion medium containing 3 mmol/l D-glucose, neither pO2 nor insulin release of the islets were changed. Temporal analysis of oscillations in pO2 and insulin release revealed that maximum respiration correlated to maximum or close to maximum insulin release. CONCLUSIONS The temporal relation between oscillations in pO2 and insulin release supports a role for metabolic oscillations in the generation of pulsatile insulin release.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008820 Mice, Obese Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid. Hyperglycemic Mice,Obese Mice,Mouse, Hyperglycemic,Mouse, Obese,Hyperglycemic Mouse,Mice, Hyperglycemic,Obese Mouse
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
March 1992, The American journal of physiology,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
October 1992, The American journal of physiology,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
January 1986, Advances in experimental medicine and biology,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
February 1985, Diabetes,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
February 1998, Diabetes & metabolism,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
December 2002, Acta physiologica Scandinavica,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
January 2017, PloS one,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
March 1994, The Journal of biological chemistry,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
December 1994, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity,
H Ortsäter, and P Liss, and P E Lund, and K E Akerman, and P Bergsten
February 1972, The Biochemical journal,
Copied contents to your clipboard!