Naturally occurring woodchuck hepatitis virus (WHV) deletion mutants in chronically WHV-infected woodchucks. 2000

A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
Institut für Virologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.

Deletion mutants of hepatitis B virus (HBV) are often found in chronically HBV-infected patients. It has not been possible to study the significance of such deletion mutants on liver diseases in a suitable animal model. In this study, we characterized naturally occurring deletion mutants of woodchuck hepatitis virus (WHV) in 11 chronically WHV-infected woodchucks. Deletions within the WHV preS region (nt 2992-338) had a length of 72 or 84 bp and were located in the amino terminal part of preS1. Internal deletions within the core gene (CID) had variable lengths (103 to 312 bp) and were identified within the center of this gene (nt 2021-2587). Four of seven CIDs were in-frame deletions, whereas the remaining three CIDs were out-of-frame deletions and led to the interruption of the reading frame. Sequence analysis of cloned PCR products of CIDs showed that heterogeneous WHV deletion mutants coexisted in single woodchucks. In addition, WHV genomes with double deletions in the preS1 and the core region could be found. We were unable to detect the expression of truncated core proteins in transfection experiments. The CID mutations led to a marked increase of the expression of the luciferase gene which was fused to the start codon of WHV polymerase, probably due to the shortening of the untranslated region or the removal of AUGs preceding the polymerase start codon. The characterization of naturally occurring WHV deletion mutants will allow us to study their biological and pathogenic properties in the woodchuck model in the future.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008392 Marmota A genus of Sciuridae consisting of 14 species. They are shortlegged, burrowing rodents which hibernate in winter. Woodchucks,Marmots,Marmot,Marmotas,Woodchuck
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011498 Protein Precursors Precursors, Protein
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006514 Hepatitis B Surface Antigens Those hepatitis B antigens found on the surface of the Dane particle and on the 20 nm spherical and tubular particles. Several subspecificities of the surface antigen are known. These were formerly called the Australia antigen. Australia Antigen,HBsAg,Hepatitis B Surface Antigen,Antigen, Australia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014758 Viral Core Proteins Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID. Core Proteins, Viral,Major Core Protein,Major Core Proteins, Viral,Adenovirus Core Protein VII,Core Protein V,Core Protein lambda 2,Influenza Virus Core Proteins,Major Core Protein lambda 1,Major Core Protein lambda-1,Major Core Protein sigma 2,Major Core Protein sigma-2,OVP 19,Oncornaviral Protein P19,P30 Core Proteins,Viral Protein P19,Virus Core Proteins,Core Protein, Major,Core Proteins, P30,Core Proteins, Virus,Protein P19, Oncornaviral,Protein P19, Viral,Protein, Major Core,Proteins, P30 Core,Proteins, Viral Core,Proteins, Virus Core

Related Publications

A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
April 1989, Journal of virology,
A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
June 2016, Scientific reports,
A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
January 1999, Journal of virology,
A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
October 2001, Antimicrobial agents and chemotherapy,
A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
June 2000, Antimicrobial agents and chemotherapy,
A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
September 2004, Virology,
A Botta, and M Lu, and X Zhen, and T Kemper, and M Roggendorf
March 1990, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!