Congeners of N(alpha)-acetyl-L-cysteine but not aminoguanidine act as neuroprotectants from the lipid peroxidation product 4-hydroxy-2-nonenal. 2000

M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
Departments of Pathology and Pharmacology, and the Center for Molecular Neurosciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Increased generation of neurotoxic lipid peroxidation products is proposed to contribute to the pathogenesis of Alzheimer's disease (AD). Current antioxidant therapies are directed at limiting propagation of brain lipid peroxidation. Another approach would be to scavenge the reactive aldehyde products of lipid peroxidation. N(alpha)-acetyl-L-cysteine (NAC) and aminoguanidine (AG) react rapidly and irreversibly with 4-hydroxy-2-nonenal (HNE) in vitro, and both have been proposed as potential scavengers of HNE in biological systems. We have compared NAC, AG, and a series of congeners as scavengers of HNE and as neuroprotectants from HNE. Our results showed that while both NAC and AG had comparable chemical reactivity with HNE, only NAC and its congeners were able to block HNE-protein adduct formation in vitro and in neuronal cultures. Moreover, NAC and its congeners, but not AG, effectively protected brain mitochondrial respiration and neuronal microtubule structure from the toxic effects of HNE. We conclude that NAC and its congeners, but not AG, may act as neuroprotectants from HNE.

UI MeSH Term Description Entries
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015227 Lipid Peroxidation Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor. Lipid Peroxidations,Peroxidation, Lipid,Peroxidations, Lipid

Related Publications

M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
July 1995, Free radical biology & medicine,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
September 2015, Biomolecules,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
December 2000, FEBS letters,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
January 2013, Redox biology,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
November 2005, Chemical research in toxicology,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
November 1993, Journal of reproduction and fertility,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
January 2002, Methods in molecular biology (Clifton, N.J.),
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
October 2014, DNA repair,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
November 1998, Chemical research in toxicology,
M D Neely, and L Zimmerman, and M J Picklo, and J J Ou, and C R Morales, and K S Montine, and V Amaranth, and T J Montine
May 1998, The Journal of biological chemistry,
Copied contents to your clipboard!