The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. 2000

M I Lerman, and J D Minna
Laboratory of Immanobiology, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702, USA. lerman@ncifcrf.gov

We used overlapping and nested homozygous deletions, contig building, genomic sequencing, and physical and transcript mapping to further define a approximately 630-kb lung cancer homozygous deletion region harboring one or more tumor suppressor genes (TSGs) on chromosome 3p21.3. This location was identified through somatic genetic mapping in tumors, cancer cell lines, and premalignant lesions of the lung and breast, including the discovery of several homozygous deletions. The combination of molecular manual methods and computational predictions permitted us to detect, isolate, characterize, and annotate a set of 25 genes that likely constitute the complete set of protein-coding genes residing in this approximately 630-kb sequence. A subset of 19 of these genes was found within the deleted overlap region of approximately 370-kb. This region was further subdivided by a nesting 200-kb breast cancer homozygous deletion into two gene sets: 8 genes lying in the proximal approximately 120-kb segment and 11 genes lying in the distal approximately 250-kb segment. These 19 genes were analyzed extensively by computational methods and were tested by manual methods for loss of expression and mutations in lung cancers to identify candidate TSGs from within this group. Four genes showed loss-of-expression or reduced mRNA levels in non-small cell lung cancer (CACNA2D2/alpha2delta-2, SEMA3B [formerly SEMA(V), BLU, and HYAL1] or small cell lung cancer (SEMA3B, BLU, and HYAL1) cell lines. We found six of the genes to have two or more amino acid sequence-altering mutations including BLU, NPRL2/Gene21, FUS1, HYAL1, FUS2, and SEMA3B. However, none of the 19 genes tested for mutation showed a frequent (>10%) mutation rate in lung cancer samples. This led us to exclude several of the genes in the region as classical tumor suppressors for sporadic lung cancer. On the other hand, the putative lung cancer TSG in this location may either be inactivated by tumor-acquired promoter hypermethylation or belong to the novel class of haploinsufficient genes that predispose to cancer in a hemizygous (+/-) state but do not show a second mutation in the remaining wild-type allele in the tumor. We discuss the data in the context of novel and classic cancer gene models as applied to lung carcinogenesis. Further functional testing of the critical genes by gene transfer and gene disruption strategies should permit the identification of the putative lung cancer TSG(s), LUCA, Analysis of the approximately 630-kb sequence also provides an opportunity to probe and understand the genomic structure, evolution, and functional organization of this relatively gene-rich region.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D002289 Carcinoma, Non-Small-Cell Lung A heterogeneous aggregate of at least three distinct histological types of lung cancer, including SQUAMOUS CELL CARCINOMA; ADENOCARCINOMA; and LARGE CELL CARCINOMA. They are dealt with collectively because of their shared treatment strategy. Carcinoma, Non-Small Cell Lung,Non-Small Cell Lung Cancer,Non-Small Cell Lung Carcinoma,Non-Small-Cell Lung Carcinoma,Nonsmall Cell Lung Cancer,Carcinoma, Non Small Cell Lung,Carcinomas, Non-Small-Cell Lung,Lung Carcinoma, Non-Small-Cell,Lung Carcinomas, Non-Small-Cell,Non Small Cell Lung Carcinoma,Non-Small-Cell Lung Carcinomas
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002893 Chromosomes, Human, Pair 3 A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification. Chromosome 3
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

M I Lerman, and J D Minna
May 1996, Cancer research,
M I Lerman, and J D Minna
December 2008, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!