Rifampin susceptibility of ribonucleic acid synthesis in a fragile Saccharomyces cerevisiae mutant. 1975

P V Venkov, and G I Milchev, and A A Hadjiolov

Ribonucleic acid (RNA) synthesis in the sorbitol-dependent, fragile yeast mutant VY1160 (Venkov et al., 1974) is rapidly inhibited by rifampin. The growth of the mutant cells and protein synthesis are more slowly affected by the antibiotic, apparently as secondary phenomena. Lower doses of rifampin (50 to 100 mug/ml) preferentially inhibit ribosomal RNA synthesis in comparison to that of messenger RNA and transfer RNA. Transcription and translation of messenger RNA continues in the presence of low doses of rifampin, as evidenced by the unimpaired induction of alpha-glucosidase. Partially purified RNA polymerase II from this mutant, in contrast to that from the parental strain, is strongly inhibited by low concentrations (1 mug/ml) of rifampin, whereas RNA polymerase I from the two strains is similar in behavior. The mutant may be useful for the study of regulatory mechanisms of transcription in eukaryotes.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005959 Glucosidases Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-. Glucosidase
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

P V Venkov, and G I Milchev, and A A Hadjiolov
April 1974, Antimicrobial agents and chemotherapy,
P V Venkov, and G I Milchev, and A A Hadjiolov
January 1977, Journal of bacteriology,
P V Venkov, and G I Milchev, and A A Hadjiolov
July 1991, Yeast (Chichester, England),
P V Venkov, and G I Milchev, and A A Hadjiolov
September 1973, Journal of bacteriology,
P V Venkov, and G I Milchev, and A A Hadjiolov
November 1974, Journal of bacteriology,
P V Venkov, and G I Milchev, and A A Hadjiolov
April 1991, Yeast (Chichester, England),
P V Venkov, and G I Milchev, and A A Hadjiolov
December 1988, Yeast (Chichester, England),
P V Venkov, and G I Milchev, and A A Hadjiolov
January 1983, The International journal of biochemistry,
P V Venkov, and G I Milchev, and A A Hadjiolov
November 1969, Journal of bacteriology,
P V Venkov, and G I Milchev, and A A Hadjiolov
September 2000, Journal of bacteriology,
Copied contents to your clipboard!