Structure and assembly of the Alu domain of the mammalian signal recognition particle. 2000

O Weichenrieder, and K Wild, and K Strub, and S Cusack
European Molecular Laboratory Biology, Grenoble Outstation, France.

The Alu domain of the mammalian signal recognition particle (SRP) comprises the heterodimer of proteins SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. It retards the ribosomal elongation of signal-peptide-containing proteins before their engagement with the translocation machinery in the endoplasmic reticulum. Here we report two crystal structures of the heterodimer SRP9/14 bound either to the 5' domain or to a construct containing both 5' and 3' domains. We present a model of the complete Alu domain that is consistent with extensive biochemical data. SRP9/14 binds strongly to the conserved core of the 5' domain, which forms a U-turn connecting two helical stacks. Reversible docking of the more weakly bound 3' domain might be functionally important in the mechanism of translational regulation. The Alu domain structure is probably conserved in other cytoplasmic ribonucleoprotein particles and retroposition intermediates containing SRP9/14-bound RNAs transcribed from Alu repeats or related elements in genomic DNA.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D018271 Signal Recognition Particle A cytosolic ribonucleoprotein complex that acts to induce elongation arrest of nascent presecretory and membrane proteins until the ribosome becomes associated with the rough endoplasmic reticulum. It consists of a 7S RNA and at least six polypeptide subunits (relative molecular masses 9, 14, 19, 54, 68, and 72K). SRP (Signal Recognition Particle),Particle, Signal Recognition,Recognition Particle, Signal
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies
D020087 Alu Elements The Alu sequence family (named for the restriction endonuclease cleavage enzyme Alu I) is the most highly repeated interspersed repeat element in humans (over a million copies). It is derived from the 7SL RNA component of the SIGNAL RECOGNITION PARTICLE and contains an RNA polymerase III promoter. Transposition of this element into coding and regulatory regions of genes is responsible for many heritable diseases. Alu Family,Alu Repetitive Sequences,Alu-Like Repetitive Sequence,Alu Element,Alu Families,Alu Repetitive Sequence,Element, Alu,Elements, Alu,Families, Alu,Family, Alu,Repetitive Sequence, Alu,Repetitive Sequences, Alu,Sequence, Alu Repetitive,Sequences, Alu Repetitive

Related Publications

O Weichenrieder, and K Wild, and K Strub, and S Cusack
May 2001, RNA (New York, N.Y.),
O Weichenrieder, and K Wild, and K Strub, and S Cusack
December 2014, RNA (New York, N.Y.),
O Weichenrieder, and K Wild, and K Strub, and S Cusack
February 2003, Current opinion in structural biology,
O Weichenrieder, and K Wild, and K Strub, and S Cusack
January 2004, Nucleic acids research,
O Weichenrieder, and K Wild, and K Strub, and S Cusack
January 2014, RNA biology,
O Weichenrieder, and K Wild, and K Strub, and S Cusack
July 1997, RNA (New York, N.Y.),
O Weichenrieder, and K Wild, and K Strub, and S Cusack
July 1997, The EMBO journal,
O Weichenrieder, and K Wild, and K Strub, and S Cusack
September 2007, Proceedings of the National Academy of Sciences of the United States of America,
O Weichenrieder, and K Wild, and K Strub, and S Cusack
October 1999, RNA (New York, N.Y.),
Copied contents to your clipboard!