Interaction between hepatitis B virus core protein and reverse transcriptase. 2000

L Lott, and B Beames, and L Notvall, and R E Lanford
Department of Virology and Immunology, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA.

Previous mutagenesis studies with hepatitis B virus (HBV) suggest that continued interactions with core are required for several steps in genomic replication. To examine core-polymerase (Pol) interactions, insect cells were coinfected with baculovirus constructs that independently expressed core and Pol. The results demonstrated several features with implications that core plays an interactive role with HBV Pol: (i) core coprecipitated with constructs expressing full-length Pol as well as the terminal protein (TP), reverse transcriptase (RT) and RNase H domains of Pol, independently; (ii) coprecipitation of core was not dependent on the presence of an epsilon stem-loop sequence; and (iii) core-Pol complexes migrated as intact capsid particles, as detected by sucrose gradient analysis. To analyze the structural and sequence requirements of core in recognition of Pol, a series of core mutants with two- to four-amino-acid insertions or carboxy-terminal deletions were assessed for Pol interaction. The results indicated that capsid formation is required but not sufficient for interaction with Pol and that the TP and RT domains of Pol have different requirements for interaction with core. To map the core binding sites on Pol, a panel of amino- and carboxy-terminal deletion mutants of the TP and RT domains of Pol were analyzed for interaction with core. At least three separate core binding sites on Pol were detected. This analysis begins to define basic requirements for core-Pol interactions, but further study is necessary to delineate the effects of these interactions on encapsidation and genome replication.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006515 Hepatitis B virus The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum. Dane Particle,Hepatitis Virus, Homologous Serum,B virus, Hepatitis,Hepatitis B viruses,Particle, Dane,viruses, Hepatitis B
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D014758 Viral Core Proteins Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID. Core Proteins, Viral,Major Core Protein,Major Core Proteins, Viral,Adenovirus Core Protein VII,Core Protein V,Core Protein lambda 2,Influenza Virus Core Proteins,Major Core Protein lambda 1,Major Core Protein lambda-1,Major Core Protein sigma 2,Major Core Protein sigma-2,OVP 19,Oncornaviral Protein P19,P30 Core Proteins,Viral Protein P19,Virus Core Proteins,Core Protein, Major,Core Proteins, P30,Core Proteins, Virus,Protein P19, Oncornaviral,Protein P19, Viral,Protein, Major Core,Proteins, P30 Core,Proteins, Viral Core,Proteins, Virus Core
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

L Lott, and B Beames, and L Notvall, and R E Lanford
November 2004, The Journal of general virology,
L Lott, and B Beames, and L Notvall, and R E Lanford
August 1996, Journal of virology,
L Lott, and B Beames, and L Notvall, and R E Lanford
March 2006, Journal of virology,
L Lott, and B Beames, and L Notvall, and R E Lanford
October 2016, Cellular and molecular biology (Noisy-le-Grand, France),
L Lott, and B Beames, and L Notvall, and R E Lanford
November 1978, The Journal of biological chemistry,
L Lott, and B Beames, and L Notvall, and R E Lanford
April 2010, Virus genes,
L Lott, and B Beames, and L Notvall, and R E Lanford
February 2007, The Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi,
L Lott, and B Beames, and L Notvall, and R E Lanford
July 2013, Journal of medical virology,
L Lott, and B Beames, and L Notvall, and R E Lanford
February 2010, Archives of virology,
Copied contents to your clipboard!