Cloning, tissue distribution, and central expression of the gonadotropin-releasing hormone receptor in the rainbow trout (Oncorhynchus mykiss). 2000

T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes cedex, France.

A full-length cDNA encoding a GnRH receptor (GnRH-R) has been obtained from the brain of rainbow trout. This cDNA encodes a protein of 386 amino acids (aa) exhibiting the typical arrangement of the G-protein-coupled receptors in seven transmembrane domains. However, a second ATG could give rise to a receptor with a 30-aa longer extracellular domain. As already shown in other fish and Xenopus, this protein possesses an intracellular domain, in contrast with its mammalian counterparts. In the case of rainbow trout, this intracellular carboxy-terminal tail consists of 58 residues. Northern blotting experiments carried out in the brain, the pituitary, and the liver only resulted in a single band of 1.9-2 kilobases in the pituitary, although reverse transcription-polymerase chain reaction amplification products were found in the brain, the pituitary, the retina, and the ovary. In situ hybridization using a probe corresponding to the full-length coding region of the receptor was performed on vitellogenic or ovulating females and allowed to detect a weak but specific signal in the proximal pars distalis of the pituitary, the preoptic region, the mediobasal hypothalamus, and the optic tectum. However, the strongest signal was consistently detected in a mesencephalic structure, the nucleus lateralis valvulae, the significance of which is presently open to speculation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011966 Receptors, LHRH Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors. GnRH Receptors,Gonadoliberin Receptors,Gonadorelin Receptors,Gonadotropin Releasing-Hormone Receptors,LHFSHRH Receptors,LHRH Receptors,Luliberin Receptors,Receptors, GnRH,Receptors, Gonadoliberin,Receptors, Gonadorelin,Receptors, Luliberin,Follicle Stimulating Hormone-Releasing Hormone Receptors,GnRH Receptor,Gonadorelin Receptor,Gonadotropin-Releasing Hormone Receptor,LHRH Receptor,Luteinizing Hormone Releasing Hormone Receptors,Luteinizing Hormone Releasing-Hormone Receptor,Receptor, LHRH,Receptors, Gonadotropin Releasing-Hormone,Receptors, LHFSHRH,Follicle Stimulating Hormone Releasing Hormone Receptors,Gonadotropin Releasing Hormone Receptor,Gonadotropin Releasing Hormone Receptors,Hormone Receptor, Gonadotropin-Releasing,Luteinizing Hormone Releasing Hormone Receptor,Receptor, GnRH,Receptor, Gonadorelin,Receptor, Gonadotropin-Releasing Hormone,Receptors, Gonadotropin Releasing Hormone,Releasing-Hormone Receptors, Gonadotropin
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
February 1995, General and comparative endocrinology,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
October 1998, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
May 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
December 2001, General and comparative endocrinology,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
June 2008, Fish & shellfish immunology,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
December 2003, Immunogenetics,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
January 2009, General and comparative endocrinology,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
January 2003, Environmental toxicology and chemistry,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
January 2015, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment,
T Madigou, and E Mañanos-Sanchez, and S Hulshof, and I Anglade, and S Zanuy, and O Kah
January 2012, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Copied contents to your clipboard!