K15 expression implies lateral differentiation within stratified epithelial basal cells. 2000

R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
CRC Cell Structure Research Group, University of Dundee, United Kingdom. rmporter@dux.dundee.ac.uk

Keratins are intermediate filament proteins whose expression in epithelial tissues is closely linked to their differentiated state. The greatest complexity of this expression is seen in the epidermis and associated structures. The critical basal (proliferative) cell layer expresses the major keratin pair, K5 and K14, but it also expresses an additional type I keratin, K15, about which far less is known. We have compared the expression of K15 with K14 in normal, pathological, and tissue culture contexts; distinct differences in their expression patterns have been observed that imply different regulation and function for these two genes. K15 appears to be preferentially expressed in stable or slowly turning over basal cells. In steady-state epidermis, K15 is present in higher amounts in basal cells of thin skin but in lower amounts in the rapidly turning over thick plantar skin. Although remaining high in basal cell carcinomas (noninvasive) it is suppressed in squamous cell carcinomas (which frequently metastasize). Wounding-stimulated epidermis loses K15 expression, whereas K14 is unchanged. In cultured keratinocytes, K15 levels are suppressed until the culture stratifies, whereas K14 is constitutively expressed throughout. Therefore, unlike K14, which appears to be a fundamental component of all keratinocytes, K15 expression appears to be more tightly coupled to a mature basal keratinocyte phenotype.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
January 2022, Methods in molecular biology (Clifton, N.J.),
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
February 1997, The Journal of general virology,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
June 1995, The Journal of cell biology,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
August 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
March 2016, Oncogene,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
September 2005, The Prostate,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
July 1995, Cell,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
January 1978, Membrane biochemistry,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
January 1982, The Journal of membrane biology,
R M Porter, and D P Lunny, and P H Ogden, and S M Morley, and W H McLean, and A Evans, and D L Harrison, and E L Rugg, and E B Lane
November 2011, Molecular biology of the cell,
Copied contents to your clipboard!