The interaction of analogues of the antimicrobial lipopeptide, iturin A2, with alkali metal ions. 2000

M Rautenbach, and P Swart, and M J van der Merwe
Departmnent of Biochemistry, University of Stellenbosch, Matieland, South Africa. mra@maties.sun.ac.za

Electrospray mass spectrometry was employed as a tool in this first study on the molecular interaction between the alkali metal ions and antifungal lipopeptide iturin A, and some analogues. Cationisation by sodium and signal intensity of lipopeptide species depended on sodium concentration, but was independent of sample solvent, carrier solvent polarity and sample pH between 4 and 11. 8-Beta, a linear analogue of iturin A2 (8-Beta; beta-aminotetradecanoyl-NYNQPNS), and its shorter linear lipopeptide analogues, associated either one or two alkali metal cations, while the N-->C cyclic peptides associated with only one cation. The chirality of the beta-NC14 residue had a limited influence on the cationisation. It was observed that 8-Beta contained at least four interaction sites for a cation of which two, the C-terminal carboxylate and the side-chain of tyrosine, can take part in ionic interaction with a cation. It is proposed that the remaining two interaction centres of alkali metal ions are within the two type II beta-turns found in conformation of natural iturin A. This was corroborated by the diminished capacity of the shorter peptides, in which one of the beta-turns was eliminated to bind a second larger cation. All the lipopeptides showed the same order of alkali metal ion selectivity: Na+ > K+ > Rb+. These results indicated a size limitation in the interaction cavity or cavities. The absence of, or observation of only low abundance, di-cationised complexes of cyclic peptides the indicated association of the cation in the interior of the peptide ring. It is thus hypothesised that alkali metal ions can bind in one of the two beta-turns in the natural iturin A molecule.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008672 Metals, Alkali Metals that constitute group 1(formerly group IA) of the periodic table. They are the most strongly electropositive of the metals. Note that HYDROGEN is not considered an alkali metal even though it falls under the group 1 heading in the periodic table. Alkali Metal,Alkali Metals,Group 1 Element,Group 1 Elements,1 Element, Group,Element, Group 1,Elements, Group 1,Metal, Alkali
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

M Rautenbach, and P Swart, and M J van der Merwe
January 1989, Biochimie,
M Rautenbach, and P Swart, and M J van der Merwe
January 2022, Critical reviews in food science and nutrition,
M Rautenbach, and P Swart, and M J van der Merwe
March 1974, Biochemistry,
M Rautenbach, and P Swart, and M J van der Merwe
May 2000, Archives of biochemistry and biophysics,
M Rautenbach, and P Swart, and M J van der Merwe
October 2023, Biomolecules,
M Rautenbach, and P Swart, and M J van der Merwe
January 2011, Luminescence : the journal of biological and chemical luminescence,
M Rautenbach, and P Swart, and M J van der Merwe
August 2012, Journal of molecular modeling,
M Rautenbach, and P Swart, and M J van der Merwe
August 1981, Journal of biochemistry,
M Rautenbach, and P Swart, and M J van der Merwe
June 1990, Canadian journal of microbiology,
M Rautenbach, and P Swart, and M J van der Merwe
April 2021, The journal of physical chemistry. A,
Copied contents to your clipboard!