Persistent increase in bone turnover in Graves' patients with subclinical hyperthyroidism. 2000

Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
Department of Internal Medicine, Osaka City University Graduate School of Medicine, Japan.

Hyperthyroid patients exhibit accelerated bone loss by increased bone turnover, and normalization of thyroid function is associated with a significant attenuation of increased bone turnover, followed by an increase in bone mineral density. However, of patients with Graves' disease (GD) maintained on antithyroid drug (ATD) treatment, some exhibit persistent suppression of TSH long after normalization of their serum free T3 (FT3) and free T4 (FT4) levels. The aim of this study was to examine whether bone metabolism is still enhanced in TSH-suppressed premenopausal GD patients with normal FT3 and FT4 levels after ATD therapy (n = 19) compared with that in TSH-normal premenopausal GD patients (n = 30), and to evaluate the relationship between serum TSH receptor antibody (TRAb), an indicator of disease activity of GD, and various biochemical markers of bone metabolism. No difference was found between the two groups in serum Ca, phosphorus, or intact PTH, or in urinary Ca excretion. Serum bone alkaline phosphatase (B-ALP), bone formation markers, and urinary excretions of pyridinoline (U-PYD) and deoxypyridinoline (U-DPD), which are bone resorption markers, were significantly higher in the TSH-suppression group than in the TSH-normal group (B-ALP, P < 0.05; U-PYD, P < 0.001; U-DPD, P < 0.001). For the group of all GD patients enrolled in this study, TSH, but neither FT3 nor FT4, exhibited a significant negative correlation with B-ALP (r = -0.300; P < 0.05), U-PYD (r = -0.389; P < 0.05), and U-DPD (r = -0.446; P < 0.05), whereas TRAb exhibited a highly positive and significant correlation with B-ALP (r = 0.566; P < 0.0001), U-PYD (r = 0.491; P < 0.001), and U-DPD (r = 0.549; P < 0.0001). Even in GD patients with normal TSH, serum TRAb was positively correlated with B-ALP (r = 0.638; P < 0.001), U-PYD (r = 0.638; P < 0.001), and U-DPD (r = 0.641; P < 0.001). In conclusion, it is important to achieve normal TSH levels during ATD therapy to normalize bone turnover. TRAb was not only a useful marker for GD activity, but was also a very sensitive marker for bone metabolism in GD patients during ATD treatment.

UI MeSH Term Description Entries
D006980 Hyperthyroidism Hypersecretion of THYROID HORMONES from the THYROID GLAND. Elevated levels of thyroid hormones increase BASAL METABOLIC RATE. Hyperthyroid,Primary Hyperthyroidism,Hyperthyroidism, Primary,Hyperthyroids
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011989 Receptors, Thyrotropin Cell surface proteins that bind pituitary THYROTROPIN (also named thyroid stimulating hormone or TSH) and trigger intracellular changes of the target cells. TSH receptors are present in the nervous system and on target cells in the thyroid gland. Autoantibodies to TSH receptors are implicated in thyroid diseases such as GRAVES DISEASE and Hashimoto disease (THYROIDITIS, AUTOIMMUNE). Receptors, Thyroid Stimulating Hormone,TSH Receptors,Thyroid Stimulating Hormone Receptors,Thyrotropin Receptors,LATS Receptors,Receptor, LATS Immunoglobulins,Receptors, LATS,Receptors, Long-Acting Thyroid Stimulator,Receptors, TSH,TSH Receptor,Thyroid Stimulating Hormone Receptor,Thyrotropin Receptor,Receptor, TSH,Receptor, Thyrotropin,Receptors, Long Acting Thyroid Stimulator
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females

Related Publications

Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
January 1992, Hormone research,
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
September 2019, Annales d'endocrinologie,
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
January 2024, Indian journal of clinical biochemistry : IJCB,
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
November 2017, Clinical endocrinology,
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
March 2002, Lancet (London, England),
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
March 2002, Lancet (London, England),
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
March 2002, Lancet (London, England),
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
March 2002, Lancet (London, England),
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
March 2002, Lancet (London, England),
Y Kumeda, and M Inaba, and H Tahara, and Y Kurioka, and T Ishikawa, and H Morii, and Y Nishizawa
March 2002, Lancet (London, England),
Copied contents to your clipboard!