TATA-flanking sequences influence the rate and stability of TATA-binding protein and TFIIB binding. 2001

B S Wolner, and J D Gralla
Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA.

The kinetics of TATA-binding protein (TBP) and TFIIB binding were measured on a series of promoter constructs that had varying sequences within and flanking the TATA box. The flanking sequences were found to influence TBP stability even though they do not contact the protein. This occurs by altering the decay rate rather than the association rate. TFIIB association is accompanied by protein-protein cooperativity as indicated by the simultaneous release of both proteins in challenge experiments. The sequence of the TATA box and the sequences that flank it can influence the kinetics of the TFIIB.TBP.DNA complex. TFIIB can contribute to tighter TATA binding in two ways. It always slows the decay rate of TBP, but it can also increase the rate of association at promoters with certain combinations of TATA and flanking sequences. The results imply that the interplay between the TATA box and flanking elements leads to variations in the kinetics of preinitiation complex formation that may account for the observed effects of all of these diverse sequences on transcription.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016385 TATA Box A conserved A-T rich sequence which is contained in promoters for RNA polymerase II. The segment is seven base pairs long and the nucleotides most commonly found are TATAAAA. Hogness Box,Box, Hogness,Box, TATA
D035181 TATA-Box Binding Protein A general transcription factor that plays a major role in the activation of eukaryotic genes transcribed by RNA POLYMERASES. It binds specifically to the TATA BOX promoter element, which lies close to the position of transcription initiation in RNA transcribed by RNA POLYMERASE II. Although considered a principal component of TRANSCRIPTION FACTOR TFIID it also takes part in general transcription factor complexes involved in RNA POLYMERASE I and RNA POLYMERASE III transcription. TATA-Box-Binding Protein,RNA Polymerase II TATA-Binding Protein,TATA-Binding Protein,Transcription Factor TBP,RNA Polymerase II TATA Binding Protein,TATA Binding Protein,TATA Box Binding Protein
D035581 Transcription Factor TFIIB An RNA POLYMERASE II specific transcription factor. It plays a role in assembly of the pol II transcriptional preinitiation complex and has been implicated as a target of gene-specific transcriptional activators. TFIIB,Transcription Factor IIB

Related Publications

B S Wolner, and J D Gralla
December 2002, Molecular and cellular biology,
B S Wolner, and J D Gralla
December 1998, Molecules and cells,
Copied contents to your clipboard!