Na(+)-K(+)-ATPase-mediated basolateral rubidium uptake in the maturing rabbit cortical collecting duct. 2000

A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
Department of Pediatrics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.

Within the renal cortical collecting duct (CCD), transepithelial Na(+) absorption and K(+) secretion are linked to basolateral Na(+)-K(+)-ATPase activity. Our purpose was to examine the developmental changes in basolateral Na(+)-K(+)-ATPase-mediated (86)rubidium (Rb) uptake, its inhibitor sensitivity and relationship to pump hydrolytic activity and Na(+) transport. Multiple CCDs ( approximately 6 mm) from maturing rabbits were affixed to coverslips, preincubated at 37 degrees C for 10 min (+/-1-2.5 mM ouabain or 10 or 100 micro M Schering-28080, an inhibitor of H(+)-K(+)-ATPase), and then transferred to prewarmed incubation solution containing tracer amounts of (86)Rb (+/-inhibitors). After 1 min at 37 degrees C, tubular samples were rinsed and permeabilized and isotope counts were measured to calculate basolateral Rb uptake. Ouabain-inhibitable Rb uptake, an index of basolateral Na(+)-K(+) pump activity, increased approximately 3-fold during the 1st 8 wk of postnatal life (P < 0.03). The approximately 2-fold increase in absolute rate of Rb uptake between 1 and 6 wk (2.64 +/- 0.45 to 5.02 +/- 0.32 pmol. min(-1). mm(-1)) did not reach statistical significance. The rate of basolateral Rb uptake increased further after the 6th wk of life to 7.29 +/- 0.53 pmol. min(-1). mm(-1) in adult animals (P < 0.03 vs. 6 wk). Schering-28080 failed to inhibit Rb uptake, implying that functional H(+)-K(+)-ATPase is absent at the basolateral membrane. Na(+)-K(+)-ATPase hydrolytic activity, determined by using a microassay that measured inorganic phosphate release from [gamma-(32)P]ATP under maximum velocity (V(max)) conditions, also increased in the differentiating CCD (from 316.2 +/- 44.4 pmol. h(-1). mm(-1) at 2 wk to 555.9 +/- 105.1 at 4 wk to 789.7 +/- 145.0 at 6 wk; r = 1.0 by linear regression analysis; P < 0.005). The parallel approximately 2.5-fold increases in Na(+)-K(+)-ATPase activity and ouabain-sensitive Rb uptake between 2- and 6-wk postnatal age suggest that the developmental increase in basolateral transport capacity is due predominantly to an increase in enzyme abundance. The signals mediating the developmental increase in Na(+)-K(+)-ATPase activity in the CCD remain to be defined.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
November 2003, American journal of physiology. Renal physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
May 1995, The Journal of membrane biology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
August 1993, Pflugers Archiv : European journal of physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
January 1999, The American journal of physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
April 1989, The American journal of physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
March 1996, The American journal of physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
November 1993, The Journal of biological chemistry,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
February 1999, The American journal of physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
December 1985, The Journal of general physiology,
A R Constantinescu, and J C Lane, and J Mak, and B Zavilowitz, and L M Satlin
November 1987, The American journal of physiology,
Copied contents to your clipboard!